480 likes | 499 Views
Learn about momentum and energy conservation in physics with detailed equations and examples. Explore Newton's laws, work, kinetic energy, and more. Discover the principles behind different types of forces and energy conversion. Enhance your understanding of physics concepts with practical applications.
E N D
Newton’s 2nd law (shorthand version) F= ma change in v time a = change in v time F= m
Car truck collision Fc Ft Ft = mt change in vt time Fc = mc change in vc time Fc t = mc change in vc Ft t = mt change in vt Fc t +Ft t= mc change in vc+mt change in vt (Fc+Ft)t=change in mcvc+change inmtvt (Fc+Ft)t=change in(mcvc+mtvt)
Car truck collision Fc Ft (Fc+Ft)t=change in(mcvc+mtvt) Newton’s 3rd law: Fc= -Ft (Fc+Ft)t= 0 0 = change in(mcvc+mtvt) mcvc+mtvt stays constant!
Momentum = mv mcvc = momentum of car this changes this changes Mtvt= momentum of thruck mcvc+mtvt = total momentum this stays constant Before = -40 After = -40 Momentum is conserved!
True for all collisions before =+20 after =+20 visit www.physicsclassroom.com/mmedia/index.html
Revisit the canoe at the dock Initial momentum canoe = 0 boy = 0 Total = 0 final momentum canoe = mcvc boy = mbvb Total = 0
eating Finding nemo
Billiard balls 2 before after ptot 2 ptot 1 1
Conservation of momentumon a sub-atomic level before p p ptot proton after p ptot p p- meson p- meson
Rocket travel before P0 after P0 + p exhaust p
Rifle recoil mV mV
Physicist’s definition of “work” dist∥ A scalar (not a vector) dist Work = F x dist∥
Atlas holds up the Earth But he doesn’t move, dist∥ = 0 Work= Fx dist∥ = 0 He doesn’t do any work!
Garcon does work whenhe picks up the tray but not while he carries it around the room dist is not zero, but dist∥ is 0
Why this definition? A vector equation Newton’s 2nd law: F=ma Definition of work + a little calculus A scalar equation Work= change in ½mv2 This scalar quantity is given a special name: kinetic energy
Concept of Kinetic Energy Emilie du Châtelet (1706-1749) Brilliant mathematician One of Voltaire’s lovers
Work = change in KE This is called: the Work-Energy Theorem
Units again… Kinetic Energy = ½mv2 m2 s2 kg work = F x dist∥ same! =1Joule m s2 N m =kg m
Work done by gravity end start dist dist∥ change in vertical height W=mg Work = F x dist∥ = -mg xchange in height = -change in mgh
Gravitational Potential Energy Workgrav = -change in mgh This is called: “Gravitational Potential Energy” (or PEgrav) change in PEgrav = -Workgrav Workgrav = -change in PEgrav
If gravity is the only force doing work…. Work-energy theorem: -change in mgh = change in ½ mv2 0 = change in mgh + change in ½ mv2 change in (mgh + ½ mv2) = 0 mgh + ½ mv2 = constant
Conservation of energy mgh + ½ mv2 = constant Gravitational Potential energy Kinetic energy If gravity is the only force that does work: PE + KE = constant Energy is conserved
Free fall(reminder) height t = 0s 80m V0 = 0 75m t = 1s V1 = 10m/s 60m t = 2s V2 = 20m/s t = 3s 35m V3 = 30m/s t = 4s 0m V4 = 40m/s
m=1kg free falls from 80m mgh ½ mv2 sum t = 0s V0 = 0 h0=80m 800J 0 800J t = 1s 750J 50J V1 = 10m/s; h1=75m 800J t = 2s V2 = 20m/s; h2=60m 600J 200J 800J t = 3s V3 = 30m/s; h3=35m 350J 450J 800J t = 4s V4 = 40m/s; h4=0 0 800J 800J
pendulum T W=mg Two forces: T andW T is always ┴ to the motion (& does no work)
Pendulum conserves energy Etot=mghmax Etot=mghmax hmax Etot=1/2 m(vmax)2
Work done by a spring Relaxed Position F=0 x F I compress the spring (I do + work; spring does -work) Work done by spring = - change in ½kx2
If spring is the only force doing work…. Work-energy theorem: -change in ½ kx2 = change in ½ mv2 0 = change in ½ kx2 + change in ½ mv2 change in ( ½kx2 + ½mv2) = 0 ½ kx2 + ½ mv2 = constant potential energy in the spring
Conservation of energysprings & gravity mgh + ½kx2 + ½mv2 = constant Gravitational potential energy spring potential energy Kinetic energy If elastic force & gravity are the only forces doing work: PEgrav + PEspring + KE = constant Energy is conserved
example grav PE KineticE Spring PE
Two types of forces: • “Conservative” forces • forces that do + & – work • Gravity • Elastic (springs, etc) • Electrical forces • … • “Dissipative” forces • forces that only do – work • Friction • Viscosity • …. -work heat (no potential energy.) -work change in PE
Thermal atomic motion Air solid Heat energy= KE and PE associated with the random thermal motion of atoms
Work-energy theorem(all forces) Workfric = change in (PE+KE) Work done dissipative Forces (always -) potential energy From all Conservative forces Kinetic energy -Workfric= change in heat energy Workfric= -change in heat energy -change inHeat Energy = change in (PE+KE)
Work – Energy Theorem(all forces) 0 =change inHeat Energy + change in (PE+KE) 0 =change in (Heat Energy+PE+KE) Heat Energy + PE + KE = constant Law of Conservation of Energy
Energy conversion while skiing Potential energy Potential energykinetic energy Friction: energy gets converted to heat
Units again Heat units: 1 calorie = heat energy required to raise the temp of 1 gram of H2O by 1o C Kg m2/s2 1 calorie= 4.18 Joules
Food Calories 1 Calorie = 1000 calories = 1Kcalorie The Calories you read on food labels 1 Calorie= 4.18x103 Joules 7 x 106 J 8 x 105 J 2 x 106 J
Power amout of energy elapsed time Rate of using energy: Power = Joule second Units: 1 = 1 Watt A 100 W light bulb consumes 100 J of electrical energy each second to produce light
Other units Over a full day, a work-horse can have an average work output of more than 750 Joules each second 1 Horsepower = 750 Watts
Kilowatt hours energy time Power = energy = power x time power unit x time unit = energy unit Kilowatts (103 W) hours (3600s) Elec companies use: x 1 kilowatt-hour = 1kW-hr = 103W x 3.6x103s = 3.6x106 Ws J
about 300 won In Hawaii electrical energy costs about 25cents/kW-hr What is the cost in Seoul?