mental imagery and visualization in post stroke rehabilitation n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
MENTAL IMAGERY AND VISUALIZATION IN POST-STROKE REHABILITATION PowerPoint Presentation
Download Presentation
MENTAL IMAGERY AND VISUALIZATION IN POST-STROKE REHABILITATION

Loading in 2 Seconds...

play fullscreen
1 / 24

MENTAL IMAGERY AND VISUALIZATION IN POST-STROKE REHABILITATION - PowerPoint PPT Presentation


  • 1128 Views
  • Uploaded on

MENTAL IMAGERY AND VISUALIZATION IN POST-STROKE REHABILITATION. Frances Copeland Eddie Revuelta Jessica Salzman Linda Heu Claudiu Mich Katherine Tsobanoudis. Learning Objectives. At the completion of this topic students will be able to:

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'MENTAL IMAGERY AND VISUALIZATION IN POST-STROKE REHABILITATION' - JasminFlorian


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
mental imagery and visualization in post stroke rehabilitation
MENTAL IMAGERY AND VISUALIZATION IN POST-STROKE REHABILITATION
  • Frances Copeland
  • Eddie Revuelta
  • Jessica Salzman
  • Linda Heu
  • Claudiu Mich
  • Katherine Tsobanoudis
learning objectives
Learning Objectives

At the completion of this topic students will be able to:

Define Motor imagery & Mental practice/Motor imagery practice

Describe the neurophysiological areas associated with MI

Describe the 5-step framework of MI

Describe the best way to implement MI in post-stroke rehab

Discuss the effectiveness of MI for relearning daily functional tasks

In both the Upper & Lower Extremities

imagery definitions
Imagery Definitions:

Motor Imagery: “Imagining of an action without its physical execution; it is an active process during which the representation of an action is internally reproduced within working memory without any overt output.”

Mental Practice/Motor Imagery Practice: “repetition or rehearsing of imagined motor acts with the intention of improving their physical execution.”

(F Malouin et al., 2010)

history of mental imagery
History of Mental Imagery

The notion that thoughts rely on imagery was common among philosophers, as far back as Plato (~300 BCE)

Introspectionists recorded peoples experiences of MI, following Wundt (~1850)

From the ~1913-1960 study of imagery not considered scientific, interest revived after the cognitive revolution.

history of mental imagery1
History of Mental Imagery

Guidelines from Sport Science

Teaching and developing imagery can be abstracted from sports

Combine overt movement with imagery techniques, enhances vividness

More vivid = more blood flow to visual areas

Sports literature clearly divides imagery techniques and uses applied models

Not always the case with Rehab, huge range of actions

(S Braun et al., 2008)

neuroscience and mi
Neuroscience and MI

Technology used to research the brain while an imagery task is performed

fMRI = functional magnetic resonance imaging

Measures hemodynamic response to neural activity

TMS = transcranial magnetic stimulation

Noninvasive method to excite neuron

Shows causality, by showing what regions are active during a task

(Caltech.edu, 2004)

neuroscience and mi cont
Neuroscience and MI (cont.)

fMRI results = V1 (primary visual cortex) is activated during visualization

TMS results = disrupting V1 with magnetic impulses causes problems with vision and visual imagery

Shows V1 is important for both visual perception and mental imagery

neurophysiological study
Neurophysiological Study

Premotor cortex and rostral part of the posterior SMA were activated bilaterally, this supports the hypothesis that motor imagery involves virtually all stages of motor control.

  • Mental imagery activation is 30% of the level seen in actual performance motor cortex
  • (Roth et al., 1996)
developing a framework
Developing a Framework

The subject may imagine the movement in:

3rdPerson perspective (or external imagery)

1stPerson perspective (or internal imagery)

(F Malouin et al., 2010)

3 Pillars in developing imagery framework

The Patient – Pt's choose activities

The Evidence – Mental practice may alter neural function

The Therapist – Utilize 5-step outline to keep intervention dynamic

(S Braun et al., 2008)

5 step outline to intervention
5 Step Outline to Intervention

Suitable Candidate?

Nature of Rx

Teach

Implant, incorporate, monitor

PT reduces support gradually

slide11

MI in UE Recovery of Function with Stroke Patients

  • Page et al. (2007) conducted a Randomized Placebo-Controlled Trial
  • 32 chronic stroke patients with moderate motor deficits.
  • Placebo group did 30 minutes of relaxation instead of 30 minutes of mental practice
slide12

MI in UE Recovery of Function with Stroke Patients (cont.)

  • Results: MP group showed improvements in ARA and UE FM score. The differences between pre and post-treatment data were significant. Placebo group showed no significant differences between pre and post
  • Conclusion: A traditional rehabilitation program that includes mental practice of tasks practiced during therapy increases outcomes significantly
slide13

MI in UE Recovery of Function with Stroke Patients (cont.)

  • Liu (2009) investigated the benefits of an MI intervention to enhance performance of tasks in a new environment for post-stroke patients.
  • 34 patients with a first acute stoke were included
  • All patients received 1 hour of physical therapy five times a week for three weeks
  • Patients in MI group received 1 hour of MI
  • Patients in FR group were given conventional therapy
slide14

MI in UE Recovery of Function with Stroke Patients (cont.)

  • Results: There were significant differences between the MI and FR groups in the training environment for the three tasks that involved UE
  • There were significant differences between the MI and FR groups in a new environment, including the three tasks that involved the UE
  • Conclusion: This study provides evidence of the positive effects of MI for improving patients’ generalization of task performance to new environments
slide15

MI in UE Recovery of Function with Stroke Patients

  • In summary, the evidence of MI rehabilitation is promising but still limited (Braun et al (2008)).
  • What does this mean?
  • MI can be applied to post stroke patients in efforts to recover UE function along with physical practice.
evidence that locomotor activities can be imagined through mi
Evidence That Locomotor Activities Can Be Imagined Through MI
  • Mentally-simulated and physically-executed locomotor activities:
    • Similar autonomic responses
    • Similar temporal organization
    • Activate neural networks that greatly overlap
    • (Fusi et al. 2005)
    • (Szamcitat et al. 2007)
    • (Bakker et al. 2007)
evidence of induced brain reorganization
Evidence of Induced Brain Reorganization
  • Mental and physical practice leads to expansion of bilateral motor areas
  • Initial performance improvement due to greater motor preparation and planning
  • (Sacco et al. 2006)
  • Similar TA activation during motor imagery of simple dorsiflexion and gait
    • (Bakker et al. 2008)
pet and fmri studies with mental imagery and le function
PET and fMRI Studies withMental Imagery and LE Function
  • MRI scan of subject’s brain while:
  • a) Observing video of walking
  • b) Imagining self walking
  • c) Actually walking
  • Results: brain activity similar in imaginary/observational walking as in actual walking

(Iseki et al 2008)

gait rehabilitation of chronic post stroke hemiparesis
Gait Rehabilitation of Chronic Post–Stroke Hemiparesis
  • 17 post-stroke patients, MI training only
  • Intervention:
    • 15-20 min sessions, 3x/week for 6 weeks
  • Results:
    • Increased walking speed, stride length, and single-leg stance time (affected LE)
    • Improved mobility and dynamic balance

(Dunsky et al 2008)

mi combined with physical practice in gait training
MI Combined with Physical Practice in Gait Training
  • Best adherence and learning effects when training strategies combined
  • Proportions of practice time range from
    • 1 physical + 5 mental rehearsals
    • 1 physical + 10 mental rehearsals
  • Best to gradually increase number of mental repetitions

(Malouin et al. 2010)

effectiveness of mi in gait training post stroke
Effectiveness of MI in Gait Training Post-Stroke
  • Best results: MI + physical practice
  • MI = adjunct to conventional gait training
  • Does NOT replace physical practice
  • (Malouin et al. 2010)
review learning objectives
Review Learning Objectives

Students should be able to:

Define Motor imagery & Mental practice/Motor imagery practice

Describe the neurophysiological areas associated with MI

Describe the 5-step framework of MI

Describe the best way to implement MI in post-stroke rehab

Discuss the effectiveness of MI for relearning daily functional tasks

In both the Upper & Lower Extremities

references 2010
References (2010)
  • Fusi S, Cutuli D, Valente MR, et al. Cardioventilatory responses during real or imagined walking at low speed. Arch Ital Biol. 2005; 143: 223-228.
  • Bakker M, Verstappen CCP, Bloem B R, Toni I. Recent advances in functional neuroimaging of gait. J Neural Transm. 2007; 114: 1232-1331.
  • Szamcitat AJ, Shen S, Sterr A. Motor imagery of complex everyday movements: an fMRI study. Neuroimage. 2007; 34: 702-713.
  • Sacco K, Cauda F, Cerliani L, et al. Motor imagery of walking following training in locomotor attention: the effect of “the tango lesson.” Neuroimage. 2006; 32: 1441-1449.
  • Bakker M, Overeem S, Snijders AH, et al. Motor imagery of foot dorsiflexion and gait: effects on corticospinal excitability. Clin Neurophysiol. 2008; 119: 2519-2527.
  • Iseki K, Hanakawa T, Shinuzaki J, et al. Neural mechanisms involved in mental imagery and observation of gait. Neuroimage. 2008; 41: 1021-1031.
  • Dunsky A, Dickstein R, Marcovitz E, et al. Home-based motor imagery training for gait rehabilitation of people with chronic poststroke hemiparesis. Arch Phys Med Rehabil. 2008; 89: 1580-1588.
  • Malouin F, Richards CL. Mental practice for relearning locomotor skills. Phys Ther. 2010; 90: 240-251.
  • Liu, P. Use of mental imagery to improve task generalization after a stroke. Hong Kong Medical Journal. 2009; 15: 37-41.
  •  Page, SJ, Levine, P, Leonard, A. Mental practice in chronic stroke: results of a randomized, placebo-controlled trial. Stroke. 2007; 38: 1293-1297.
  • Braun, S, Kleynen, M, Schack, T. Using mental practice in stroke rehabilitation: a framework. Clinical Rehabilitation. 2007; 22: 579-591.
  • Roth, M, Decety, J, Raybaudi, M, et al. Possible involvement of primary motor cortex in mentally simulated movement: a functional resonance imaging study. Neuroreport. 1996; 17: 1280-4.
references 2009
References (2009)

Braun, S, Kleynen, M, Schack, T. Using mental practice in stroke rehabilitation: a framework. Clinical Rehabilitation. 2007; 22: 579-591.

Crosbie, J, McDonough, S, Gilmore, D, et al. The adjunctive role of mental practice in the rehabilitation of the upper limb after hemiplegic stroke: a pilot study. Clinical Rehabilitation, 2004; 18: 60-68.

DeStephano, D. (2002). Visual Knowledge [pdf document]. Received from http://chat.carleton.ca/~ddestefa/270Slides/chap11.PDF

Dickstein, R, Dunsky, A, Marcovitz, E. Motor Imagery for Gait Rehabilitation in Post-Stroke Hemiparesis. Physical Therapy. 2004; 84: 1167-1177.

Dunsky, A, Dickstein, R, Ariav, C et. al. Motor imagery practice in gait rehabilitation of chronic post-stroke hemiparesis: four case studies. International Journal of Rehabilitation Research. 2006; 29: 351-356.

Iseki, K., Hanakawa, T., Shinozaki, J., et al. Neural mechanisms involved in mental imagery and observation of gait. NeuroImage. 2008; 41: 1021-1031.

Jackson, P, Doyon, J, Richards, C L, et. al. The efficacy of combined physical and mental practice in the learning of a foot-sequence task after stroke: a case report. Neurorehabilitation and Neural Repair. 2004;18: 106-111.

McEwen, S, Huijbregts, M, Ryan, J, et al. Cognitive strategy use to enhance motor skill acquisition post-stroke: a critical review. Brain Injury. 2009; 23: 263-277.

Mental Imagery (October 10, 2008). Stanford Encyclopedia of Philosophy. Received from http://plato.stanford.edu/entries/mental-imagery/

Muller, K, Butefisch, C, Seitz, R, et al. Mental practice improves hand function after hemiparetic stroke. Restorative Neurology and Neuroscience. 2007;25: 501-511.

Page, S, Levine, P, & Leonard, A. Effects of mental practice on affected limb use and function in chronic stroke. Archives of Physical Medicine and Rehabilitation. 2005;86: 399-402.

Roth, M, Decety, J, Raybaudi, M, et al. Possible involvement of primary motor cortex in mentally simulated movement: a functional resonance imaging study. Neuroreport. 1996; 17: 1280-4.