Statistical relational learning
Download
1 / 29

Statistical Relational Learning - PowerPoint PPT Presentation


  • 282 Views
  • Updated On :

Statistical Relational Learning. Pedro Domingos Dept. Computer Science & Eng. University of Washington. Overview. Motivation Some approaches Markov logic Application: Information extraction Challenges and open problems. Motivation. Most learners only apply to i.i.d. vectors

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Statistical Relational Learning' - Audrey


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
Statistical relational learning l.jpg

Statistical Relational Learning

Pedro Domingos

Dept. Computer Science & Eng.

University of Washington


Overview l.jpg
Overview

  • Motivation

  • Some approaches

  • Markov logic

  • Application: Information extraction

  • Challenges and open problems


Motivation l.jpg
Motivation

  • Most learners only apply to i.i.d. vectors

  • But we need to do learning and (uncertain) inference over arbitrary structures:trees, graphs, class hierarchies,relational databases, etc.

  • All these can be expressed in first-order logic

  • Let’s add learning and uncertain inference to first-order logic


Some approaches l.jpg
Some Approaches

  • Probabilistic logic [Nilsson, 1986]

  • Statistics and beliefs [Halpern, 1990]

  • Knowledge-based model construction[Wellman et al., 1992]

  • Stochastic logic programs [Muggleton, 1996]

  • Probabilistic relational models [Friedman et al., 1999]

  • Relational Markov networks [Taskar et al., 2002]

  • Markov logic[Richardson & Domingos, 2004]

  • Bayesian logic [Milch et al., 2005]

  • Etc.


Markov logic l.jpg
Markov Logic

  • Logical formulas are hard constraintson the possible states of the world

  • Let’s make them soft constraints:When a state violates a formula,It becomes less probable, not impossible

  • Give each formula a weight(Higher weight  Stronger constraint)

  • More precisely:Consider each grounding of a formula


Example friends smokers l.jpg
Example: Friends & Smokers

Two constants: Anna (A) and Bob (B)

Friends(A,B)

Friends(A,A)

Smokes(A)

Smokes(B)

Friends(B,B)

Cancer(A)

Cancer(B)

Friends(B,A)


Markov logic contd l.jpg
Markov Logic (Contd.)

  • Probability of a state x:

  • Most discrete statistical models are special cases (e.g., Bayes nets, HMMs, etc.)

  • First-order logic is infinite-weight limit

Weight of formula i

No. of true groundings of formula i in x


Key ingredients l.jpg
Key Ingredients

  • Logical inference:Satisfiability testing

  • Probabilistic inference:Markov chain Monte Carlo

  • Inductive logic programming:Search with clause refinement operators

  • Statistical learning:Weight optimization by conjugate gradient


Alchemy l.jpg
Alchemy

  • Open-source software available at:

  • A new kind of programming language

  • Write formulas, learn weights, do inference

  • Haven’t we seen this before?

  • Yes, but without learning and uncertain inference

alchemy.cs.washington.edu


Example information extraction l.jpg
Example:Information Extraction

Parag Singla and Pedro Domingos, “Memory-Efficient

Inference in Relational Domains”(AAAI-06).

Singla, P., & Domingos, P. (2006). Memory-efficent

inference in relatonal domains. In Proceedings of the

Twenty-First National Conference on Artificial Intelligence

(pp. 500-505). Boston, MA: AAAI Press.

H. Poon & P. Domingos, Sound and Efficient Inference

with Probabilistic and Deterministic Dependencies”, in

Proc. AAAI-06, Boston, MA, 2006.

P. Hoifung (2006). Efficent inference. In Proceedings of the

Twenty-First National Conference on Artificial Intelligence.


Segmentation l.jpg
Segmentation

Author

Title

Venue

Parag Singla and Pedro Domingos, “Memory-Efficient

Inference in Relational Domains”(AAAI-06).

Singla, P., & Domingos, P. (2006). Memory-efficent

inference in relatonal domains. In Proceedings of the

Twenty-First National Conference on Artificial Intelligence

(pp. 500-505). Boston, MA: AAAI Press.

H. Poon & P. Domingos, Sound and Efficient Inference

with Probabilistic and Deterministic Dependencies”, in

Proc. AAAI-06, Boston, MA, 2006.

P. Hoifung (2006). Efficent inference. In Proceedings of the

Twenty-First National Conference on Artificial Intelligence.


Entity resolution l.jpg
Entity Resolution

Parag Singla and Pedro Domingos, “Memory-Efficient

Inference in Relational Domains”(AAAI-06).

Singla, P., & Domingos, P. (2006). Memory-efficent

inference in relatonal domains. In Proceedings of the

Twenty-First National Conference on Artificial Intelligence

(pp. 500-505). Boston, MA: AAAI Press.

H. Poon & P. Domingos, Sound and Efficient Inference

with Probabilistic and Deterministic Dependencies”, in

Proc. AAAI-06, Boston, MA, 2006.

P. Hoifung (2006). Efficent inference. In Proceedings of the

Twenty-First National Conference on Artificial Intelligence.


Entity resolution13 l.jpg
Entity Resolution

Parag Singla and Pedro Domingos, “Memory-Efficient

Inference in Relational Domains”(AAAI-06).

Singla, P., & Domingos, P. (2006). Memory-efficent

inference in relatonal domains. In Proceedings of the

Twenty-First National Conference on Artificial Intelligence

(pp. 500-505). Boston, MA: AAAI Press.

H. Poon & P. Domingos, Sound and Efficient Inference

with Probabilistic and Deterministic Dependencies”, in

Proc. AAAI-06, Boston, MA, 2006.

P. Hoifung (2006). Efficent inference. In Proceedings of the

Twenty-First National Conference on Artificial Intelligence.


State of the art l.jpg
State of the Art

  • Segmentation

    • HMM (or CRF) to assign each token to a field

  • Entity resolution

    • Logistic regression to predict same field/citation

    • Transitive closure

  • Alchemy implementation: Seven formulas


Types and predicates l.jpg
Types and Predicates

token = {Parag, Singla, and, Pedro, ...}

field = {Author, Title, Venue}

citation = {C1, C2, ...}

position = {0, 1, 2, ...}

Token(token, position, citation)

InField(position, field, citation)

SameField(field, citation, citation)

SameCit(citation, citation)


Types and predicates16 l.jpg
Types and Predicates

token = {Parag, Singla, and, Pedro, ...}

field = {Author, Title, Venue, ...}

citation = {C1, C2, ...}

position = {0, 1, 2, ...}

Token(token, position, citation)

InField(position, field, citation)

SameField(field, citation, citation)

SameCit(citation, citation)

Optional


Types and predicates17 l.jpg
Types and Predicates

token = {Parag, Singla, and, Pedro, ...}

field = {Author, Title, Venue}

citation = {C1, C2, ...}

position = {0, 1, 2, ...}

Token(token, position, citation)

InField(position, field, citation)

SameField(field, citation, citation)

SameCit(citation, citation)

Input


Types and predicates18 l.jpg
Types and Predicates

token = {Parag, Singla, and, Pedro, ...}

field = {Author, Title, Venue}

citation = {C1, C2, ...}

position = {0, 1, 2, ...}

Token(token, position, citation)

InField(position, field, citation)

SameField(field, citation, citation)

SameCit(citation, citation)

Output


Formulas l.jpg
Formulas

Token(+t,i,c) => InField(i,+f,c)

InField(i,+f,c) <=> InField(i+1,+f,c)

f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c))

Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’)

^ InField(i’,+f,c’) => SameField(+f,c,c’)

SameField(+f,c,c’) <=> SameCit(c,c’)

SameField(f,c,c’) ^ SameField(f,c’,c”)

=> SameField(f,c,c”)

SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”)


Formulas20 l.jpg
Formulas

Token(+t,i,c) => InField(i,+f,c)

InField(i,+f,c) <=> InField(i+1,+f,c)

f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c))

Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’)

^ InField(i’,+f,c’) => SameField(+f,c,c’)

SameField(+f,c,c’) <=> SameCit(c,c’)

SameField(f,c,c’) ^ SameField(f,c’,c”)

=> SameField(f,c,c”)

SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”)


Formulas21 l.jpg
Formulas

Token(+t,i,c) => InField(i,+f,c)

InField(i,+f,c) <=> InField(i+1,+f,c)

f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c))

Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’)

^ InField(i’,+f,c’) => SameField(+f,c,c’)

SameField(+f,c,c’) <=> SameCit(c,c’)

SameField(f,c,c’) ^ SameField(f,c’,c”)

=> SameField(f,c,c”)

SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”)


Formulas22 l.jpg
Formulas

Token(+t,i,c) => InField(i,+f,c)

InField(i,+f,c) <=> InField(i+1,+f,c)

f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c))

Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’)

^ InField(i’,+f,c’) => SameField(+f,c,c’)

SameField(+f,c,c’) <=> SameCit(c,c’)

SameField(f,c,c’) ^ SameField(f,c’,c”)

=> SameField(f,c,c”)

SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”)


Formulas23 l.jpg
Formulas

Token(+t,i,c) => InField(i,+f,c)

InField(i,+f,c) <=> InField(i+1,+f,c)

f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c))

Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’)

^ InField(i’,+f,c’) => SameField(+f,c,c’)

SameField(+f,c,c’) <=> SameCit(c,c’)

SameField(f,c,c’) ^ SameField(f,c’,c”)

=> SameField(f,c,c”)

SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”)


Formulas24 l.jpg
Formulas

Token(+t,i,c) => InField(i,+f,c)

InField(i,+f,c) <=> InField(i+1,+f,c)

f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c))

Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’)

^ InField(i’,+f,c’) => SameField(+f,c,c’)

SameField(+f,c,c’) <=> SameCit(c,c’)

SameField(f,c,c’) ^ SameField(f,c’,c”)

=> SameField(f,c,c”)

SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”)


Formulas25 l.jpg
Formulas

Token(+t,i,c) => InField(i,+f,c)

InField(i,+f,c) <=> InField(i+1,+f,c)

f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c))

Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’)

^ InField(i’,+f,c’) => SameField(+f,c,c’)

SameField(+f,c,c’) <=> SameCit(c,c’)

SameField(f,c,c’) ^ SameField(f,c’,c”)

=> SameField(f,c,c”)

SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”)


Formulas26 l.jpg
Formulas

Token(+t,i,c) => InField(i,+f,c)

InField(i,+f,c) ^ !Token(“.”,i,c) <=> InField(i+1,+f,c)

f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c))

Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’)

^ InField(i’,+f,c’) => SameField(+f,c,c’)

SameField(+f,c,c’) <=> SameCit(c,c’)

SameField(f,c,c’) ^ SameField(f,c’,c”)

=> SameField(f,c,c”)

SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”)



Results matching venues on cora l.jpg
Results:Matching Venues on Cora


Challenges and open problems l.jpg
Challenges and Open Problems

  • Scaling up learning and inference

  • Model design (aka knowledge engineering)

  • Generalizing across domain sizes

  • Continuous distributions

  • Relational data streams

  • Relational decision theory

  • Statistical predicate invention

  • Experiment design