300 likes | 470 Views
calculation of transmission coefficient and eigenstates of double quantum well structure
E N D
Course: Quantum Electronics Arpan Deyasi Quantum Transmission Coefficient using PMM Electronics Calculation of Arpan Deyasi Arpan Deyasi, RCCIIT 14/10/2020 1
Graphical representation of Transmission Coefficient Arpan Deyasi T(E) Quantum Electronics E E1 E2 E3 E0 14/10/2020 Arpan Deyasi, RCCIIT 2
Drawbacks of Transfer Matrix Technique Arpan Deyasi Step potential well: Ideal case Quantum Real quantum well can’t have step potential profile, in fact, different complex potential profiles are considered for application purpose Electronics 14/10/2020 Arpan Deyasi, RCCIIT 3
Solution Arpan Deyasi We have to consider a mathematical technique where variation of potential at each point of both barrier and well layers can be incorporated Quantum Electronics V = V0 V = 0 14/10/2020 Arpan Deyasi, RCCIIT 4
Change required in Mathematical Formulation Arpan Deyasi = Quantum * − 2 ( )( z E V ) m * 2 ( ) z E m = 0 b w 1 2 2 2 Electronics for well for barrier 14/10/2020 Arpan Deyasi, RCCIIT 5
Change required in Mathematical Formulation We have to make a generalized wave-vector for both barrier and well Arpan Deyasi Quantum Electronics Why? Then we will be able to incorporate simultaneous variation of barrier and well potentials 14/10/2020 Arpan Deyasi, RCCIIT 6
Generalized wave-vector Arpan Deyasi * − 2 ( )( z E V ) m Quantum j j = j 2 calculated at jthpoint Electronics 14/10/2020 Arpan Deyasi, RCCIIT 7
DQWTB structure Arpan Deyasi Quantum Electronics j j+1 Z 14/10/2020 Arpan Deyasi, RCCIIT 8
Generalized wave equations Arpan Deyasi = + − exp( ) exp( ) A i z B i z Quantum j j j j j = Electronics + − exp( ) exp( ) C i z D i z + + + + + 1 1 1 1 1 j j j j j 14/10/2020 Arpan Deyasi, RCCIIT 9
Generalized boundary conditions Arpan Deyasi = Quantum j+ 1 j Electronics d d + 1 j j = dz dz 14/10/2020 Arpan Deyasi, RCCIIT 10
At interface Arpan Deyasi = Quantum j+ 1 j + − exp( ) exp( + ) A = i z B i z Electronics j C j j j − exp( ) exp( ) i z D i z + + + + 1 1 1 1 j j j j 14/10/2020 Arpan Deyasi, RCCIIT 11
At interface Arpan Deyasi = ' ' j+ 1 j Quantum − − exp( ) exp( − ) i = Electronics A i z i B i z j j j j z j j − exp( ) exp( ) i C i i D i z + + + + + + 1 1 1 1 1 1 j j j j j j = − − exp( ) exp( − ) A i z B i z j j j j j j − exp( ) exp( ) C i z D i z + + + + + + 1 1 1 1 1 1 j j j j j j 14/10/2020 Arpan Deyasi, RCCIIT 12
At interface Arpan Deyasi Quantum − − exp( ) exp( ) A i z B i z j j j j + 1 j = exp( ) C i z Electronics + + 1 1 j j j + 1 j − − exp( ) D i z + + 1 1 j j j 14/10/2020 Arpan Deyasi, RCCIIT 13
At interface + − exp( ) exp( + ) A = Arpan Deyasi i z B i z j C j j j − exp( ) exp( ) i z D i z + + + + 1 1 1 1 j j j j Quantum − − exp( ) exp( ) A i z B i z j j j j + Electronics + 1 1 j j = − − exp( ) exp( ) C i z D i z + + + + 1 1 1 1 j j j j j j 1 1 A B C D 1 1 1 − In matrix notation + 1 j j = + + 1 1 j j − 1 + 1 j j j j 14/10/2020 Arpan Deyasi, RCCIIT 14
At interface Arpan Deyasi 1 1 A B C D 1 1 1 − + 1 j j = Quantum + + 1 1 j j − 1 + 1 j j j j Electronics 1 1 − 1 A B C D 1 1 1 − + 1 j j = + + 1 1 j j − 1 + 1 j j j j 14/10/2020 Arpan Deyasi, RCCIIT 15
At interface Arpan Deyasi 1 1 Quantum A B C D 1 1 1 − 1 2 + 1 j j = + + 1 1 j j − 1 + 1 j j j j Electronics + + 1 1 j j + − 1 1 A B C D 1 2 j j + 1 j j = + 1 j j + + 1 1 j j − + 1 1 j j 14/10/2020 Arpan Deyasi, RCCIIT 16
Arpan Deyasi At interface + + Quantum 1 1 j j + − 1 1 1 2 j j = P Let j Electronics + + 1 1 j j − + 1 1 j j Pj: junction matrix 14/10/2020 Arpan Deyasi, RCCIIT 17
DQWTB structure Arpan Deyasi Quantum Electronics Lj j j+1 Z 14/10/2020 Arpan Deyasi, RCCIIT 18
Significance of Lj Arpan Deyasi travelling from ‘j’ to ‘j+1’ with a distance ‘Lj’ matches the positive coefficients as well as negative coefficients Quantum Electronics 14/10/2020 Arpan Deyasi, RCCIIT 19
For Lj Arpan Deyasi = exp( ) A i L C + 1 j j j j Quantum − = exp( ) B i L D + 1 j j j j Electronics exp( ) 0 i i L A B C D + 1 j j j j In matrix notation = − 0 exp( ) L + 1 j j j j 14/10/2020 Arpan Deyasi, RCCIIT 20
For Lj Arpan Deyasi − Quantum exp( ) 0 i A B i L C D + 1 j j j j = 0 exp( ) L + 1 j j j j Let Electronics − exp( ) 0 i i L j j = P L 0 exp( ) L j j PL : step matrix 14/10/2020 Arpan Deyasi, RCCIIT 21
Q: How to calculate propagation matrix? Arpan Deyasi It is the Cartesian product of Quantum Junction matrix with Step matrix Electronics 14/10/2020 Arpan Deyasi, RCCIIT 22
Propagation Matrix calculation Arpan Deyasi Electronics + + 1 1 j j + − 1 1 Quantum 1 2 j j = P j + + 1 1 j j − + 1 1 j j − exp( ) 0 i i L j j = P L 0 exp( ) L j j 14/10/2020 Arpan Deyasi, RCCIIT 23
Propagation Matrix calculation Arpan Deyasi − + + 1 1 j j + − 1 1 Quantum 1 2 j j = P Electronics + + 1 1 j j − + 1 1 = P P P j L j j exp( ) 0 i i L j j 0 exp( ) L j j 14/10/2020 Arpan Deyasi, RCCIIT 24
Propagation Matrix calculation Arpan Deyasi exp( Quantum + + 1 1 j j − + − − ) 1 exp( ) 1 i L i L j j j j 1 2 j j = P exp( Electronics + + 1 1 j j − + ) 1 exp( ) 1 i L i L j j j j j j P P P P 11 12 = P 21 22 14/10/2020 Arpan Deyasi, RCCIIT 25
Propagation Matrix calculation Arpan Deyasi A B C D + 1 j j = P Quantum + 1 j j Electronics A B C D P P P P + 1 j j 11 12 = + 1 j j 21 22 14/10/2020 Arpan Deyasi, RCCIIT 26
Propagation Matrix calculation Arpan Deyasi A B C D P P P P + 1 j j 11 12 = Quantum + 1 j j 21 22 Electronics = + A P C P D + + 11 1 12 1 j j j = + B P C P D + + 21 1 22 1 j j j 14/10/2020 Arpan Deyasi, RCCIIT 27
Arpan Deyasi Cj+1 Aj P11 P12 Quantum P21 P22 Electronics Dj+1 Bj P12is the transmission coefficient when the wave is traversing from port 2 to port 1 and port 1 is terminated by matched load 14/10/2020 Arpan Deyasi, RCCIIT 28
P12 = 0 for practical device Arpan Deyasi = + A P C P D + + 11 1 12 1 j j j Quantum A j = P 11 C+ Electronics 1 j 2 C 1 ( ) + 1 j = = T E * A 11 11 P P j 14/10/2020 Arpan Deyasi, RCCIIT 29
Graphical representation of Transmission Coefficient Arpan Deyasi T(E) Quantum Electronics E E1 E2 E3 E0 14/10/2020 Arpan Deyasi, RCCIIT 30