simulation d un processus de poisson l.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
PowerPoint Presentation
Download Presentation

Loading in 2 Seconds...

play fullscreen
1 / 13

- PowerPoint PPT Presentation


  • 559 Views
  • Uploaded on

Simulation d ’ un processus de Poisson. É tude de la radioactivit é naturelle. Simulation d ’ un processus de Poisson. 1 – Observation d ’ une masse de mati è re radioactive, hypoth è ses de travail

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about '' - Anita


Download Now An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
simulation d un processus de poisson

Simulation d’un processus de Poisson

Étude de la radioactivité naturelle

simulation d un processus de poisson2

Simulation d’un processus de Poisson

1 – Observation d’une masse de matière radioactive, hypothèses de travail

Simulation numérique du phénomène de la radioactivité naturelle: passer d’une simple observation à la connaissance de la période d’un élément radioactif en vue d’applications comme la datation.

D’autres objectifs peuvent être visés:

1) Compréhension d’un processus de modélisation et place de la simulation informatique,

2) Etude de la loi exponentielle et application aux phénomènes d’attente,

3) Rapports entre loi exponentielle et loi de Poisson, approximation binomiale de la loi de Poisson, approximation de la loi exponentielle par une loi géométrique,

4) Ajustement d’une loi, contrôle par un test du 2.

simulation d un processus de poisson3

Simulation d’un processus de Poisson

Un capteur enregistre les instants successifs où l’un des atomes de la masse se désintègre (événement A). À partir de cette observation, on désire connaître la période de l’élément radioactif considéré.

Première étape du processus de modélisation: formuler des « hypothèses de travail» en vue d’obtenir un modèle pseudo concret du phénomène.

Deuxième étape: transformer ces hypothèses de travail en « hypothèses de modèle »constituant le modèle probabiliste dont les conséquences théoriques permettront d’interpréter les données statistiques et de résoudre le problème posé.

Hypothèses de travail:

L’événement A peut survenir inopinément et se répéter fortuitement.

Il n’y a pas de moments oùA apparaît plus souvent que d’autres: le phénomène est homogène dans le temps.

Les « chances » de voir A se produire dans un intervalle de temps donné, ne dépendent pas de ce qui s’est passé auparavant: le phénomène est sans mémoire.

- Plus cet intervalle de temps est petit, moins il y a de chance de voir A se produire et A ne se produit pas deux fois presque en même temps: A est un événement dit « rare ».

simulation d un processus de poisson4

Simulation d’un processus de Poisson

2 – Modèle probabiliste et résultats théoriques

Transformer ces hypothèses de nature heuristique en énoncés abstraits adaptés aux outils probabilistes.

Hypothèses de modèle continu:

Ω est l’ensemble continu de tous les instants oùA peut théoriquement se produire à partir d’un instant initial 0. Ω=]t0,+∞[.

1) La probabilité que A se produise dans un intervalle de temps ]t,t+∆t] ne dépend que de ∆t (phénomène homogène). Soit p = P(∆t) cette probabilité.

2) Les apparitions de A dans deux intervalles de temps disjoints sont des événements indépendants (phénomène sans mémoire).

3) On suppose que P(∆t)~∆t quand ∆t0, où>0 est une constante (les événements A sont rares).

Cette situation est caractérisée par le paramètre  qui peut être estiméà partir d’une statistique: on peut observer que, dans des conditions analogues, A se produit en moyenne  fois dans un intervalle de temps unité (cadence du phénomène).

simulation d un processus de poisson5

Simulation d’un processus de Poisson

La théorie probabiliste permet de déterminer:

- la loi du temps d’attente X1 du premier événement A,

- la loi du temps d’attente Zr du rième événement A,

- la loi du nombre N d’événements A qui se sont produits dans une durée [0, ].

Cette situation peut être décrite par un schéma (processus) de Poisson : A1… Ar… AN0 t1 t2 tX1 X2…Zr

- densité de la loi de X1: fT(t)= , pour t≥0. On a E[X1] = 1/ . C’est la loi exponentielle de paramètre .

densité de la loi de Zr: , pour z≥0. On a E[Zr] = r/ .

C’est la loi gamma (r, ).

- La loi de N est donnée par les probabilités élémentaires:

P(N=k)= , pour k  IN. On a E[N] =  et Var(N)=.

C’est la loi de Poisson de paramètre .

simulation d un processus de poisson6

Simulation d’un processus de Poisson

Signification du paramètre : E(X1) = 1/ est le temps moyen d’attente de A.

E[N] =  est le nombre moyen d’événements A qui se produisent dans une durée . Il y a donc en moyenne événements A par unité de temps ( est la cadence du phénomène).

3 – Simulation informatique et discrétisation du modèle continu

Modèle discretLa simulation informatique suppose de discrétiser l’observation. Le capteur n’interroge la masse radioactive que par intervalles de temps réguliers t suffisamment petits.

On limite l’observation à la durée  = ∆t ( = 30 dans notre TD). Pour l’étude statistique du phénomène simulé, on recommencera cette observation n fois (n=1000 dans notre TD).

Principe de la simulation: Engendrer dans une feuille de calcul Excel une suite de  chiffres, 0 (pas de désintégration dans l’intervalle ∆t précédent) ou 1 (une désintégration), le chiffre 1 apparaissant aléatoirement avec une probabilité p (probabilité d’observer une désintégration dans la durée ∆t : p = P(∆t)), variable à volonté et installée dans une cellule cachée de la feuille de calcul.L’objectif de la simulation est d’estimer la probabilité p par une approche fréquentiste, à partir d’un échantillon de n telles observations.

simulation d un processus de poisson7

Simulation d’un processus de Poisson

4 –Étude théorique du modèle discret, loi binomiale et loi géométrique

On fait une observation à chaque instant multiple de ∆t pour voir si A s’est produit. Notons les instants d’observation: 1, 2, 3, …, i-1, i, …, séparés par l’intervalle de temps ∆t. Les hypothèses du modèle continu se transforment en

Hypothèses de modèle discret:1) La probabilité que A apparaisse à la iième observation ne dépend pas de i (phénomène homogène). Soit p cette probabilité.

2) Les apparitions de A aux différentes observations sont des événements indépendants (phénomène sans mémoire).

3) On suppose que A ne peut pas apparaître deux fois dans la même observation (les événements A sont rares).

p est donc supposé assez petit, p = P(∆t)~∆t, tel que p —>  quand  —> ∞.

simulation d un processus de poisson8

Simulation d’un processus de Poisson

a) De la loi binomiale à la loi de Poisson

Soit N la variable aléatoire, nombre des apparitions de A au cours des  observations. N est un entier k compris entre 0 et .

Les conditions données en hypothèses permettent de conclure que N suit une loi binomiale B(, p).

On a P(N = k) = , E[N]=p et Var(N)= p(1–p).

On peut montrer que lorsque —> ∞, ces probabilités binomiales convergent vers les probabilités de Poisson:

P(N=k) , avec E[N] =  et Var(N) = .

simulation d un processus de poisson9

Simulation d’un processus de Poisson

b) Estimation ponctuelle de 

La suite des variable aléatoires , « moyennes arithmétiques » des valeurs prises par N dans un échantillon de taille n, converge en probabilité vers E[N] (loi des grands nombres, c’est à dire que l’on a pour tout  donné, P( –p< ) ––> 1 quand n tend vers l’infini).

On considère que  est assez grand pour que p soit assez proche de 

La valeur observée de dans un échantillon de taille n est un bon estimateur de la valeur .

(On pourrait préciser cette estimation par un intervalle de confiance en posant

P(–< ) = 1 –, où est le risque que la valeur réelle de  ne soit pas dans l’intervalle ] –, + [).

Il suffit de calculer la moyenne des valeurs observées de N dans un échantillon assez grand (contrôle expérimental de sa taille par observation de la stabilisation de cette moyenne), pour obtenir une valeur estimée de p, proche du paramètre de Poisson .

On en déduit la valeur estimée / pour la probabilité p, paramètre du modèle introduit dans l’ordinateur, et / pour la constante , cadence du phénomène, qui nous intéresse.

simulation d un processus de poisson10

Simulation d’un processus de Poisson

5 – Interprétation de la simulation dans le modèle pseudo-concret.

La masse de matière fissile contient M atomes radioactifs. La désintégration de l’un ou l’autre de ces atomes (événement A ) vérifie (en gros) les hypothèses heuristiques précédentes.

Soit p = P(∆t) la probabilité d’observer une désintégration pendant un petit intervalle de temps de durée ∆t.

On observe le phénomène pendant un temps .

Dans notre simulation, nous avons discrétisé ce temps  en  petits intervalles ∆t:

 = ∆t.

Des hypothèses il découle que p—> quand ∆t—>0. La cadence est donc la limite de P(∆t)/∆t quand ∆t tend vers 0.

Le paramètre  caractérise la radioactivité, c’est la « constante de désintégration ».

La « période »de l’élément radioactif considéré est la durée pendant laquelle la moitié de la masse fissile s’est désintégrée.

La fréquence des atomes non encore désintégrés parmi les M est alors 1/2. La loi des grands nombres permet de relier Tà.

simulation d un processus de poisson11

Simulation d’un processus de Poisson

Dans le cas de la radioactivité naturelle, on peut considérer que les désintégrations des atomes sont indépendantes. De plus, pour un intervalle de temps donné, chaque atome a la même probabilité d’être désintégré. Soit  cette probabilité de désintégration entre 0 et T.

À chaque atome radioactif de l’échantillon, on associe l’épreuve de Bernoulli qui consiste à voir s’il est désintégré au bout du temps T. Cet événement est donc de probabilité.

On recommence cette expérience avec les M atomes de la masse radioactive.

Le théorème de Bernoulli indique que la fréquence F des atomes désintégrés à l’instant T dans un échantillon de matière fissile, tend (en probabilité) vers  quand la taille de l’échantillon (c’est-à-dire le nombre d’épreuves de Bernoulli réalisées) tend vers l’infini.

Ce théorème se traduit formellement par:  > 0, P(F – > ) –––> 0 quand M ––> ∞

M étant très grand (de l’ordre de 1023), on peut conclure qu’il y a une probabilité infime que  soit notablement différente de cette fréquence 1/2 des atomes désintégrés parmi les M considérés.

T est donc la durée au bout de laquelle un atome donné a la probabilité 1/2 d’être (ou ne pas être) désintégré.

simulation d un processus de poisson12

Simulation d’un processus de Poisson

La loi exponentielle de la variable X, temps d’attente de la désintégration de l’atome (modèle continu), donne le résultat:

P(X≤T)=1/2= , d’oùT=

Par exemple T = 1580 ans pour le radium, = = 0,0004 est la cadence annuelle de désintégration des atomes de radium.

Dans notre simulation, nous avions  = 30, et par exemple p ≈ 0,085, d’où≈ 2,55/.

En prenant pour  un mois, on a simulé la radioactivité d’un élément relativement actif de demi-vie T = ≈ 0,23 mois, soit environ 8,1 jours. C’est la période de l’iode-131.

simulation d un processus de poisson13

Simulation d’un processus de Poisson

6 – Principe de la datation par radioactivité naturelle

On considère un échantillon de matière radioactive dans lequel il y a à l’instant t, M(t) atomes non désintégrés d’un élément radioactif donné.

A partir d’un instant initial t0 où l’on connaît le nombre M0 d’atomes radioactifs présents dans l’échantillon, la loi de décroissance de M(t) ( ) et la mesure de M(t) à l’instant t, permet de calculer t.

La demi-vie de ces atomes est T = où est la cadence de désintégration.

Celle-ci peut être estimée par l’observation répétée de l’échantillon sur un certain nombre d’unités de temps. Il suffit de compter le nombre N d’atomes désintégrés par unités de temps, et la moyenne est un estimateur de la cadence  mesurée avec cette unité.

Dans notre exemple de simulation où p, avec =30 et p = 0,01, si  est l’unité de temps,  = 0,3. Avec par exemple M(t) = 6,02  1023 (nombre d’Avogadro), et  une année, le taux de désintégrations par unité de temps est M(t)  1,8  1023 (ce qui en fait 5  1015 par seconde!) et une demi-vie de 2,3 ans.