1 / 29

Mehrkernige Komplexe mit Metall-Metall-Bindung

Mehrkernige Komplexe mit Metall-Metall-Bindung . Modul AC V: Hauptseminar 29.01.2013 Tobias Jurczyk. Mehrkernige Komplexe mit Metall-Metall-Bindung . 1. Niederkernige Clusterkomplexe. 2. Borane. 3. Höherkernige Clusterkomplexe. 4. Anwendungen. Mehrkernige Komplexe

varian
Download Presentation

Mehrkernige Komplexe mit Metall-Metall-Bindung

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Mehrkernige Komplexe mit Metall-Metall-Bindung Modul AC V: Hauptseminar 29.01.2013 Tobias Jurczyk

  2. Mehrkernige Komplexe mit Metall-Metall-Bindung 1. Niederkernige Clusterkomplexe 2. Borane 3. Höherkernige Clusterkomplexe 4. Anwendungen

  3. Mehrkernige Komplexe mit Metall-Metall-Bindung 1. Niederkernige Clusterkomplexe 2. Borane 3. Höherkernige Clusterkomplexe 4. Anwendungen

  4. Mehrkernige Komplexe mit Metall-Metall-Bindung Mehrkernige Komplexe mit Metall-Metall-Bindung liegen außerhalb der Koordinationstheorie von Alfred Werner. Metall-Metall-Bindungen in Molekülen wurden erstmals in den 50ziger Jahren experimentell gefunden. Mehrkernkomplexe mit Metall-Metall-Bindungen bezeichnet man auch als Clusterkomplexe. Gade, Koordinationschemie, 1. Auflage, 1998

  5. EAN-Regel Die EffectiveAtomicNumberRule (EAN-Regel) ist eine Erweiterung der 18-Valenzelektronen-Regel speziell für Clusterkomplexe. Die Basis der EAN-Regel ist, dass zwischen den bindenden Metallzentren eine Zweizentren-Zweielektronenbindung vorliegt. x: Zahl der Metall-Metall-Bindungen n: Zahl der Metallzentren N: Gesamtelektronen x = Gade, Koordinationschemie, 1. Auflage, 1998

  6. [Os3(CO)12] x: Zahl der Metall-Metall-Bindungen n: Zahl der Metallzentren N: Gesamtelektronen x = n = 3 und N = 48 x = = AC III Vorlesung, Prof. Weber

  7. [Os3(CO)12] x: Zahl der Metall-Metall-Bindungen n: Zahl der Metallzentren N: Gesamtelektronen x = n = 3 und N = 48 x = = 3 3 Metall-Metall-Bindungen Struktur: AC III Vorlesung, Prof. Weber

  8. Mehrkernige Komplexe mit Metall-Metall-Bindung 1. Niederkernige Clusterkomplexe 2. Borane 3. Höherkernige Clusterkomplexe 4. Anwendungen

  9. Borane Diboran (6) Höhere Borane bilden geöffnete Käfigstrukturen. Dabei werden ein bis max. drei Ecken eines bekannten Polyeders nicht besetzt. eine unbesetzte Ecke : nido-Borane BnHn+4 zwei unbesetzte Ecken : arachno-Borane BnHn+6 drei unbesetzte Ecken : hypho-Borane BnHn+8 Stabile geschlossene Strukturen (closo) gibt es nur bei Boran-Anionen: BnHn2-n = 5 - 12 Riedel/Janiak, Anorganische Chemie, 7. Auflage, 2007

  10. Wade-Regeln Das Verhältnis von Gerüstelektronen zu Gerüstatomen n legt die Geometrie des Gerüsts von Boranen und Boran-Anionen fest. Riedel/Janiak, Anorganische Chemie, 7. Auflage, 2007

  11. Wade-Regeln Der Grundbaustein des Gerüsts ist die B-H-Gruppe. Zählregel für die Gerüstelektronen: Gerüstelektronen = Valenzelektronenges – Xges ∙ 2 Elektronen X: Hauptgruppenatom Riedel/Janiak, Anorganische Chemie, 7. Auflage, 2007

  12. B6H10 Gerüstelektronen: VE-Gerüstatome + VE-H-Atome + Zahl der Ladungen – 2 e- pro Hauptgruppenatom Riedel/Janiak, Anorganische Chemie, 7. Auflage, 2007

  13. B6H10 Gerüstelektronen: VE-Gerüstatome + VE-H-Atome + Zahl der Ladungen – 2 e- pro Hauptgruppenatom 18 e- Riedel/Janiak, Anorganische Chemie, 7. Auflage, 2007

  14. B6H10 Gerüstelektronen: VE-Gerüstatome + VE-H-Atome + Zahl der Ladungen – 2 e- pro Hauptgruppenatom 18 e- + 10 e- + 0 e- Riedel/Janiak, Anorganische Chemie, 7. Auflage, 2007

  15. B6H10 Gerüstelektronen: VE-Gerüstatome + VE-H-Atome + Zahl der Ladungen – 2 e- pro Hauptgruppenatom 18 e- + 10 e- + 0 e- - 12 e- Riedel/Janiak, Anorganische Chemie, 7. Auflage, 2007

  16. B6H10 Gerüstelektronen: VE-Gerüstatome + VE-H-Atome + Zahl der Ladungen – 2 e- pro Hauptgruppenatom 18 e- + 10 e- + 0 e- - 12 e- = 16 e- (2n + 4) nido-Hexaboran (10) Borgerüst: pentagonale Bipyramide Riedel/Janiak, Anorganische Chemie, 7. Auflage, 2007

  17. B5H11 Gerüstelektronen: VE-Gerüstatome + VE-H-Atome + Zahl der Ladungen – 2 e- pro Hauptgruppenatom 15 e- + 11 e- + 0 e- - 10 e- Riedel/Janiak, Anorganische Chemie, 7. Auflage, 2007

  18. B5H11 Gerüstelektronen: VE-Gerüstatome + VE-H-Atome + Zahl der Ladungen – 2 e- pro Hauptgruppenatom 15 e- + 11 e- + 0 e- - 10 e- = 16 e- (2n + 6) arachno-Pentaboran (11) Borgerüst: pentagonale Bipyramide Riedel/Janiak, Anorganische Chemie, 7. Auflage, 2007

  19. B12H122- Gerüstelektronen: VE-Gerüstatome + VE-H-Atome + Zahl der Ladungen – 2 e- pro Hauptgruppenatom 36 e- + 12 e- + 2 e- - 24 e- Riedel/Janiak, Anorganische Chemie, 7. Auflage, 2007

  20. B12H122- Gerüstelektronen: VE-Gerüstatome + VE-H-Atome + Zahl der Ladungen – 2 e- pro Hauptgruppenatom 36 e- + 12 e- + 2 e- - 24 e- = 26 e- (2n + 2) closo-Dodecaborat (12) Borgerüst: B12-Ikosaeder Riedel/Janiak, Anorganische Chemie, 7. Auflage, 2007

  21. Bindungsverhältnisse im B12H122- Die 26 Gerüstelektronen werden nur für die Besetzung der Molekülorbitale des B12-Ikosaeders verwendet. Durch die Delokalisation der Elektronenist die Verbindung besonders stabil. Zweizentren-BH-Bindung B – H geschlossene Dreizentren-BBB-Bindung Riedel/Janiak, Anorganische Chemie, 7. Auflage, 2007

  22. Mehrkernige Komplexe mit Metall-Metall-Bindung 1. Niederkernige Clusterkomplexe 2. Borane 3. Höherkernige Clusterkomplexe 4. Anwendungen

  23. Isolobalanalogie Definition: „Zwei Molekülfragmente sind isolobal, wenn die Zahl, die Symmetrie-eigenschaftenund die Elektronenbesetzung ihrer Grenzorbitale gleich sindundzusätzlich noch ihre Orbitalenergien ähnlich sind.“ So eine Analogie liegt zwischen den Boranen und den Carbonylclustern vor. Fragmente: B – H M(CO)3 M = Fe, Ru, Os Gade, Koordinationschemie, 1. Auflage, 1998

  24. Wade-Mingos-Regeln Polyeder-Skelettelektronenpaar(PSEP)-Theorie für Clusterkomplexe Die Bindungsverhältnisse lassen sich besser durch delokalisierte Gerüstbindungen beschreiben. Das M(CO)3 -Fragment trägt 2 Elektronen für das Gerüst bei. Gerüstelektronen = Clustervalenzelektronenzahl – n ∙ 12 Elektronen n: Zahl der Polyederecken Gade, Koordinationschemie, 1. Auflage, 1998

  25. [Os6(CO)18]2- Gerüstelektronen: VE von Mges + VE von Liganden + Zahl der Ladungen – 12 e- pro Polyederecke 8 e- ∙ 6 + 2 e- - 12 e- ∙ 6 + 2e- ∙ 18 Gade, Koordinationschemie, 1. Auflage, 1998

  26. [Os6(CO)18]2- Gerüstelektronen: VE von Mges + VE von Liganden + Zahl der Ladungen – 12 e- pro Polyederecke = 14 e- 8 e- ∙ 6 + 2 e- - 12 e- ∙ 6 + 2e- ∙ 18 (2n + 2) closo-Gerüst: Oktaeder Gade, Koordinationschemie, 1. Auflage, 1998

  27. Mehrkernige Komplexe mit Metall-Metall-Bindung 1. Niederkernige Clusterkomplexe 2. Borane 3. Höherkernige Clusterkomplexe 4. Anwendungen

  28. Anwendungen Die Komplexe werden als Precursor für die Herstellung von Nanopartikeln/ Nanostrukturen eingesetzt (Bottom-up Approach). Beispiele: - Herstellung von Monolagen/Multilagen - Einbettung der Komplexe in eine Polymermatrix - Nutzung der Nanopartikel als aktive Zentren in der Katalyse Riedel, Moderne Anorganische Chemie, 4. Auflage, 2012 Nachrichten aus der Chemie, 06/2012, S.697

  29. Zusammenfassung: 1. Niederkernige Clusterkomplexe → EAN-Regel 2. Borane → Wade-Regeln 3. Höherkernige Clusterkomplexe → Isolobalanalogie → Wade-Mingos-Regeln 4. Anwendungen → Precursor für die Nanochemie

More Related