1 / 112

Mesh Parameterizations

Mesh Parameterizations. Lizheng Lu Lulz_zju@yahoo.com.cn Oct. 19, 2005. Overview. Introduction Planar Methods Non-Planar Methods Mean Value Methods Spherical Methods Summary. Motivation(1). Analysis on surfaces is usually performed in Eucli-

thyra
Download Presentation

Mesh Parameterizations

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Mesh Parameterizations Lizheng Lu Lulz_zju@yahoo.com.cn Oct. 19, 2005

  2. Overview • Introduction • Planar Methods • Non-Planar Methods • Mean Value Methods • Spherical Methods • Summary

  3. Motivation(1) • Analysis on surfaces is usually performed in Eucli- dean plane, using appropriate (local) coordinates. • ⇒One has to assign to every surface point a parameter value in the plane • The result of the analysis often depends on the choice of the parameterization.

  4. Example: B-Spline Interpolation

  5. Motivation(2) Q: What is a good parameterization ? A: One that preserve all the (basic) geometry length, angles, area, ... ⇒ isometric parameterization but : possible only for developable surfaces e.g., there will always be distortion ! Try to keep the distortion as small as possible (change of length, area, angles,... )

  6. Motivation(3): Applications Many operations, manipulations on/with surfaces require a parameterization as a preliminary step. e.g.: Texture mapping Surface fitting Hierarchical representations Mesh conversion Morphing & Deformation

  7. Motivation: Applications of Parameterizations

  8. Motivation: Applications of Parameterizations

  9. Motivation: Applications of Parameterizations

  10. Motivation: Applications of Parameterizations Morphing

  11. Problem Description For a triangulated set of data points find a parameteration with minimal distortion

  12. Classifications • Conformal mapping • No distortion in angles • Equiareal mapping • No distortion in areas • Isometric mappings • No distortion, but usually impossible

  13. Desirable Properties • With minimal distortion • So how to measure and minimize it? • Guaranteeing one-to-one mapping • Avoid overlapping, degenerating, flipping • Most difficult and critical! • Robustness • Time and space efficiency • Process meshes with genus, if possible

  14. Previous Methods:Classifications • Planar methods • Early works • Cube/Polycube methods • Spherical methods • Partition methods • … Goal: Minimizing distortion for diverse meshes

  15. Overview • Introduction • Planar Methods • Non-Planar Methods • Mean Value Methods • Spherical Methods • Summary

  16. Theory Foundation • Given: • A planar 3-connected graph • Boundary fixed to a convex shape in R2 • Result: • Interior vertices form a planar triangular • Each vertex is some convex combination of its neighbors

  17. Main Challenge • Measure of distortion • Ratio of singular values (Hormann & Greiner 1998) • Conformal (Levy, 2002) • Dirichlet energy (Guskov, 2002) • Mean value (Floater, 2003,2005 & Tao Ju,2005) • Boundary fixing • Choose the shape, e.g.. Circle, square, etc. • Choose the distribution • Seamless merging • Partition and cutting

  18. Main References M. S. Floater. Parameterization and smooth approximation of surface triangulations. CAGD , 1997, 14(3):231-250. Hormann, Greiner: MIPS: An efficient global parametrization method, in: Curve and Surface Design: Saint−Malo1999,153−162 M. S. Floater and M. Reimers. Meshless parameterization and surface reconstruction. CAGD , 2001, 18(2):77-92. M. S. Floater, Mean value coordinates, CAGD , 2003,20(1), 19-27. M. S. Floater, One-to-one piecewise linear mappings over triangulations, Math. Comp. 2003,72(242), 685-696. M. S. Floater and K. Hormann, Surface Parameterization: a Tutorial and Survey, in Advances in Multiresolution for Geometric Modelling, N. A. Dodgson, M. S. Floater, and M. A. Sabin (eds.), Springer-Verlag, Heidelberg, 2004, 157-186.

  19. Fixing the boundary of the mesh onto an unit circle an unit square Linear Methods: Idea

  20. Linear Methods: Idea For interior mesh points: ⇒ Forming a linear system.

  21. Choices of the Weights • Uniform: • Chord length: • Centripetal: • Mean value:

  22. Shortcomings • Severe distortion • Topology limiting • Can't process non genus-zero meshes • Introduce other artifacts • Such as cutting seams

  23. Non-linear Methods • [Hormann et al. 1999] MIPS • [Piponi et al. 2000] Seamless texture mapping of subdivision surfaces by model pelting and texture blending. SIGGRAPH • [Sander et al. 2001] Texture mapping progressive meshed. SIGGRAPH • [Zigelman et al. 2001] Texture mapping using surface flattening via multi-dimensional scaling. TVCG, 8(2), 198-207

  24. Overview • Introduction • Planar Methods • Non-Planar Methods • Mean Value Methods • Spherical Methods • Summary

  25. How to Obtain Good Parameterization • Mesh independence? • Very difficult • Less distortion? • Maybe, defining better measure function • Possible method for minimizing distortion • Choosing possible mapping domains! • Sphere, Cube/polycub, Simplified domains • ...

  26. Main References(1)Spherical Domain • Sheffer, A., Gotsman, C., Dyn, N. 2004. Robust Spherical Parameterization of Triangular Meshes. Computing, 72(1-2), 185–193. • Praun, E., Hoppe, H. Spherical Parametrization and Remeshing. SIGGRAPH2003. • Gotsman, C., Gu, X., Sheffer, A. Fundamentals of Spherical Parameterization for 3D Meshes. SIGGRAPH 2003. • Alexa, M. Recent advances in mesh morphing. 2002. Computer Graphics Forum, 21(2), 173-196. • Grimm, C. Simple manifolds for surface modeling and parametrization. Shape Modeling International 2002. • Haker, S., Angenent, S., et al. Conformal surface parameterization for texture mapping. 2000. TVCG, 6(2), 181-189. • Kobbelt, L.P., Vorsatz, J., Labisk, U., Seidel, J.-p.. A shrink-wrapping approach to remeshing polygonal surfaces. 1999. CGF. 18(3), 119-129. • Kent, J., Carlson, W., Parent, R. 1992. Shape transformation for polyhedral objects. SIGGRAPH 1992, 47-54.

  27. Main References(2)Cube/Polycube Domain • Tarini, M., Hormann, K., Cigononi, P., Montani, C. PolyCube-Maps. SIGGRAPH 2004.

  28. Main References(3) Simplified Domains • Schreiner, J., Asirvatham, A, Praun, E., Hoppe, H. Inter-Surface Mapping. SIGGRAPH 2004. • Khodakovsky, A., Litke, N., Schröder, P. Globally SmoothParameterizations with Low Distortion. SIGGRAPH 2003. • Gu, X., Gortler, J., Hoppe, H. Geometry images. SIGGRAPH 2002. • Sorkine, O., Cohen-or, D., et al. Bounded-distortion piecewise mesh parametrization. 2002. IEEE Visualization, 355-362. • Praun, E. Sweldens, W. Schröder, P. Consistent mesh parametrizations. SIGGRAPH 2001. • Guskov, I., Vidimce, K., Sweldens, W., Schröder, P. Normal meshes. SIGGRAPH 2000. • Lee, A., Dobkin, D., Sweldens, W., Schröder, P. Multiresolution mesh morphing. SIGGRAPH 1999. • Hoppe, H. Progressive meshes. SIGGRAPH 1996, 99-108.

  29. Example Spherical Methods

  30. ExamplePolycube Methods

  31. ExampleSimplification/Cutting Methods

  32. Overview • Introduction • Planar Methods • Non-Planar Methods • Mean Value Methods • Spherical Methods • Summary

  33. Mean Value Coordinates for Closed Triangular Mesh Tao Ju, Scott Schaefer, Joe Warren Rice University SIGGRAPH2005

  34. Mean Value MethodsReferences • M. S. Floater. Mean value coordinates. CAGD, 14(3):19–27, 2003. • M. S. Floater. Mean value coordinates in 3D. CAGD, 22(7):623–631, 2005. • Tao, Ju Scott Schaefer, Joe Warren. Mean Value Coordinates for Closed Triangular Meshes. SIGGRAPH 2005.

  35. Barycentric Coordinates Give , find weights such that with barycentric coordinates

  36. Boundary Value Interpolation • Given , compute such that • Given values at , construct a function • Good properties: • Interpolates values at vertices • Linear on boundary • Smooth on interior

  37. Continuous Barycentric Coordinates Discrete Continuous

  38. Mean Value Interpolation • Properties: • Interpolates boundary • Generates smooth function • Reproduces linear functions

  39. Relation to Discrete Coordinates MV coordinates ⇒ Closed-form solution of continuous interpolant for piecewise linear shapes DiscreteContinuous

  40. 3D Mean Value Coordinates • Project surface onto sphere centered at v • m = mean vector (integral of unit normal over spherical triangle) • Stokes’ Theorem:

  41. Computing the Mean Vector • Given spherical triangle, compute mean vector (integral of unit normal) • Build wedge with face normals • Apply Stokes’Theorem,

  42. Interpolant Computation • Compute mean vector: • Calculate weights • By • Sum over all triangles

  43. Implementation Considerations • Special cases • On boundary (co-planar) • Numerical stability • Small spherical triangles • Large meshes • Pseudo-code provided in paper

  44. ApplicationsBoundary Value Problems

  45. ApplicationsSolid Textures

  46. Real-time! Initial mesh Applications Surface Deformations

  47. Summary • Integral formulation for closed surfaces • Closed-form solution for triangle meshes • Numerically stable evaluation • Applications • Boundary Value Interpolation • Volumetric textures • Surface Deformation

  48. Overview • Introduction • Planar Methods • Non-Planar Methods • Mean Value Methods • Spherical Methods • Summary

  49. Challenges on Spherical Domain • Robustness • Non-overlapping -->> Difficult and critical • 1-to-1 spherical map -->> Required • Less distortion • Diverse meshes -->> Highly deformed • Oversampling/downsamping -->>Irregular • So, how to miminize it? • Visually pleasing, regular, …

  50. Previous Spherical Methods(1) • [Kent et al. 92]Shape Transformation for Polyhedral Objects. SIGGRAPH. • Projections Methods: • Convex and Star-Shaped Objects • Methods using model knowledge • Physically-Based Simulation • Simulating balloon inflation process • Hybrid methods • Unsolved problem, 1-to-1 map?…

More Related