1 / 31

Lightwaves at the end of the telecom tunnel?

Lightwaves at the end of the telecom tunnel?. Nordunet Annual Conference Reykjavik, August 24 th 2003. Yves Poppe Dir. IP Strategy. Agenda. Evolution of Transoceanic Internet Capacity Demand and Supply Aftermath of the Great Telecom Storm The R&E World Sees More and More Light

sinjin
Download Presentation

Lightwaves at the end of the telecom tunnel?

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Lightwaves at the end of the telecom tunnel? Nordunet Annual Conference Reykjavik, August 24th 2003 Yves Poppe Dir. IP Strategy

  2. Agenda • Evolution of Transoceanic Internet Capacity Demand and Supply • Aftermath of the Great Telecom Storm • The R&E World Sees More and More Light • Next (Light)wave of Opportunities

  3. The pitfalls of predictions and forecasts

  4. In October 1994 Teleglobe and its partners inaugurated Cantat-3 with two fiber pairs, capacity of 5 gigabit (2x2.5Gb) linking Canada to the UK, Germany, Denmark, Iceland and the Faroe Islands.Doubled the capacity under the Atlantic155mb was earmarked for dataEngineering estimated 17years to fill the cable

  5. Cantat-3 and R&E 1995-1998

  6. How Reality Turned Out to Look Like • The internet tsunami took everybody by surprise. • Cantat-3 was full in less than 3 years. • The magic potion of DWDM : five years later cables of 1000 times the capacity of Cantat-3 were being installed. • Deregulation, easy access to capital, advances in laser and fiber technology and spectacular internet growth created a new generation of global cable builders: Global Crossing, Level3, FLAG , 360networks and resulted in a cornucopia of transmission capacity. • R&E transatlantic connectivity : from kb/sec to meg/s to gig/sec in less than 10 years • After 3-4 years of spectacular growth, a peak in early 2000 and a long steep downhill in the telecom industry.

  7. The Battle of the Atlantic • Design capacity and RFS Gbps* RFS • Level 3/GC (Project Yellow) 1,280 Sep00 • TAT-14 (Club) 640 Apr01 • Hibernia (360networks, Inc.) 1,920 Jun01 • FLAG Atlantic-1 (FLAG/GTS) 2,560 Sep01 • Atlantic Crossing -2 (Global Crossing) 2,560** 1Q01 • TyCo Global Network 2,560 Jun02 • Apollo (C&W) 3,200 Feb03 • Total 12,160Gbps! Lit capacity early 2003: 2,338Gb (source: Telegeography) * = Design capacity ** = Cancelled, AC-2 joining Level 3

  8. The Battle of the Pacific • Design capacity and RFS Gbps* RFS • TPC-5 (club) 20 Dec98 • Southern Cross 480 Nov00 • China-US (club) 80 Jan 01 • PC-1 (Global Crossing & Marubeni) 640 Apr01 • Japan-US (club) 640 Oct01 • Tyco Pacific 5,120** Jan03 • FP-1 FLAG Pacific 5,120*** 2Q02 • 360 Pacific 4,800*** 3Q02 • Total 6,980Gbps * = Design capacity ** = april 01: Tycom joins FLAG aug 01: FLAG withdraws, Tycom continues alone; RFS postponed ***= project dropped Lit capacity early 2003: 1,043 (Telegeography)

  9. Transoceanic buildout frenzy completed • With the activation of the C&W Apollo transatlantic and Tyco’s transpacific cable the current phase of intense build-out is coming to an end • With current fill rates low and about 3 years between start and completion of a project, this means new cables unlikely before 2007-2008 • Weak point remains Europe-Asia capacity. Should improve with SEAMEWE4 scheduled RFS date Q1 2005 with 1.28Tb/s design capacity.

  10. Could there be some oversupply? • Atlantic: 19% of total capacity lit (2,338Gb). Of lit capacity about 1,300Gb is sold. • Pacific: 16% lit (1,043Gb) • Intra-Asia : 3.5% lit (15,810 Gb design capacity) • US-Latin America: 6% lit ( 5,166 GB design) • Europe-Asia: 30 gig lit ; 120 gig design capacity • Europe-Africa-Asia: 10 gig lit ; 130 gig design Numbers; Telegeography 2003 Int’l bandwidth report

  11. Congratulations Iceland ! FARICE : 40 gig at RFS 640 gig design RFS jan 1st 2004 Ready to participate in lambdaswitching!

  12. Predictions and forecasts revisited • What will fill the capacity and how fast? • Current (2003) transatlantic: voice: 9.3gig internet: 258.3gig other (IPL etc): 48.7gig • TeleGeography predicts a slow growth scenario of 763.6gig and a fast growth of 1.48Tb for 2007 • Who would dare to predict it will take 17 years to fill the capacity? • Could lambda switching have the same disruptive effect on predictions and forecasts as internet was about to have when planning capacity a decade ago?

  13. Who still remembers Icecan and Scotice? Laid in 1961-62, capacity: 24 telephone channels Also in 1961, COTC as Teleglobe was known in those days together with BPO and C&W activated the first Cantat between New Foundland and Scotland with a capacity of 80 telephone channels. Cantat1 was retired in 1986 From the Bill Glover cable stamp collection See: http://www.atlantic-cable.com/

  14. In the 1950s new technology put cables ahead of radio. Small vacuum tubes that could operate under water for 20 years or more meant that amplifiers could be buried at sea with the cable. This boosted the cable's information capacity to the point that it could even carry telephone signals. Small vacuum tubes like this could be buried at sea with the cable for years. They helped to increase a cable's information-carrying capacity by more than a thousandfold. Disruptive capacity growth? It happened before Borrowed from : The Underwater web, Smithsonian Institute http://www.sil.si.edu/Exhibitions/Underwater-Web/uw-credits.htm

  15. Agenda • Evolution of Transoceanic Internet Capacity Demand and Supply • Aftermath of the Great Telecom Storm • The R&E World Sees More and More Light • Next (Light)wave of Opportunities

  16. Aftermath of the perfect storm • More than 100 billion in default • Huge write-offs • Market valuation telecom sector down 1 trillion $ • 500,000+ jobs lost at service providers and manufacturers • Carrier capex still very conservative • First wave emerges from bankruptcy protection • Bottom reached but slow recovery

  17. How did we get into this predicament? • Deregulation + internet and wireless boom + abundance of equity capital --» wild spending by established telecom carriers and start-ups. • 1996 US Telecom Act and European deregulation promised access to a US$300 billion market growing at 10% p.a. • Emulation of get rich quick model by 1996 purchase of MFS by Worldcom for US$14billion or 6 times the value of assets put in the ground • Spectacular advances in DWDM technology expected to accomodate an insatiable bandwidth demand.

  18. How did we get into this predicament? (2) • Unrealistic expectations of traffic growth • Does internet traffic double every 90 days or every year? depends on what scale you look at it. • Rising multipolarity of the internet was largely ignored in early models : end of the US centricity of information • Japan : 80% of accessed internet info is local. • Chile: 70% is local • USA: 10 to 30% of accessed information resides in the region!

  19. During the storm : progress continued • 20+ million Broadband internet accesses (DSL and cable) in NA by end of 2003 • 2 million personal Wi-Fi routers (Linksys, D-link etc) • The Wi-Fi hotspot phenomenon • Cellphones become multifunctional and start to replace fixed line Stage set for the next wave : global reachability and mobility

  20. Agenda • Evolution of Transoceanic Internet Capacity Demand and Supply • Aftermath of the Great Telecom Storm • The R&E World Sees More and More Light • Next (Light)wave of Opportunities

  21. The R&E world savours the bandwidth glut • Happy days for the R&E world: • Europe: Geant goes 10 gig, some NREN’s also • North-America: lambda’s and dark fibre • Transatlantic: Finally enough to satisfy the bandwidth gluttony of the high energy physics people. 10gig transatlantic links on the verge of becoming common place. • Transpacific and intra-Asia: slower price decline, lambda’s still have to wait a while. • Europe-Asia : remains a bottle-neck however.

  22. North-American R&E lambda initiatives • Canada • Ca*net4 : Canarie federal R&E network • RISQ : Quebec • ORANO : Ontario • BCnet ORAN: British Columbia • USA • NLR (National Lightrail): CENIC, Cisco, Level3 • Fiberco : Internet2 with Level3 • USAwave : SURA with AT&T • Teragrid • DoE ultrascale : initially ORNL – Sunnyvale - Chicago • Abilene 2nd gen

  23. USA regional R&E initiatives • California (CENIC Optical Networking Initiative) • Connecticut (Connecticut Education Network) • Florida (Florida LambdaRail) • Indiana (I-LIGHT) • Illinois (I-WIRE) • Maryland, D.C. & northern Virginia (MAX) • Michigan • New York + New England states (NEREN) • North Carolina (NCNI) • Ohio (Third Frontier Network) • Oregon • SURA Crossroads (southeastern region) • Texas (Star of Texas) Source: Paul Love internet2 Jtech Lawrence,Ka august 4th

  24. Transatlantic R&E lambda initiatives • Translight • Starlight : Eurolink -UIC • Netherlight : SURFnet • DataTAG/CERN • Canarie • 10 gig triangle Chicago-Amsterdam-Geneva and Ca*net4 10 gig to NY and Seattle

  25. The capacity divide • Uneven geographic distribution of capacity gluts contributes to a capacity divide, sometimes further exacerbated by monopolies or oligopolies in certain regions • Clearly illustrated by the SLAC PingER project measuring regional disparities of internet packet loss. • Abrupt halt of the global build affected Mediterranean and Europe-Asia • Uneven capacity distribution is also visible on national and regional level: Everyone builds on same major routes and same major population centers.

  26. Agenda • Evolution of Transoceanic Internet Capacity Demand and Supply • Aftermath of the Great Telecom Storm • The R&E World Sees More and More Light • Next (Light)wave of Opportunities

  27. The optical future has already started • Will it lead to an all-optical future? • Will Moore’s law and related laws for growth of fiber transmission capacity and internet growth continue to apply? Probably • The laws of gravity still apply, even in the New Economy. Progress alternates between periods of exponential growth and plateaus were the progress is absorbed. • Technology ahead of demand? • 160 wavelengths at 40Gb ? • Soliton technology? • Optical crystals and hollow-core fibers with another 100fold increase of capacity per fiberstrand capacity?

  28. The Verizon optical bet As reported in Business Week, August 4th • Verizon plans fiber to every home and business in its 29 state territory : 10-15years and US$20 to 40 billion. US$12.5 capex in2003. • Why? Cable Companies are eating into phone lines (2.2 million end 2002, forecast 3.7 million in 2005 ) and are ahead in broadband internet (66% of the 18 million US BB internet users). • Is this model applicable outside the US in coming years? • Not sure; phone companies DSL dominate in many countries. Competitive pressure from cablecos mostly not so severe.

  29. What are the next telecom growth engines? • The telecom ecosystem is famished. Hopes for reviving corporate and end-user demand are largely pinned on • Integrated mobile internet access (E-mail,web, data), 3G • SMS, Voice over IP, location based services • Home/SME area networks • Local wireless: Bluetooth, Wi-Fi, Ultra large Bandwidth • Further penetration of DSL and cable access, FTTH? • P2P applications : videoconferencing, gaming etc. • Secure VPN’s and end to end security and encryption. • Remote monitoring, tracking, sensing (healthcare, transportation etc.) • Audio/videostreaming • sensor networks, RFID • Widespread penetration of this end to end mobility and reachability on the internet implies the deployment of IPv6, prerequisite for permanent addresses, scaleability and sufficient address space.

  30. Next: the era of ubiquitous everything • Ubiquitous computing • Ubiquitous communication • Ubiquitous information access • Ubiquitous monitoring • Ubiquitous localisation and tracking • Ubiquitous neighbour discovery and sentient networks

  31. Thank you for your attention

More Related