Browsing
This presentation is the property of its rightful owner.
Sponsored Links
1 / 37

Browsing PowerPoint PPT Presentation


  • 88 Views
  • Uploaded on
  • Presentation posted in: General

Browsing. Τεχνικές που χρησιμοποιούνται για τη διευκόλυνση του χρήστη στην αναζήτηση κειμένων. Μοντέλα για Browsing. Flat Structure Guided Hypertext. Flat. Δεν υπάρχει συγκεκριμένη οργάνωση στα κείμενα

Download Presentation

Browsing

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Browsing

Browsing

Τεχνικές που χρησιμοποιούνται για τη διευκόλυνση του χρήστη στην αναζήτηση κειμένων.


Browsing1

Μοντέλα για Browsing

  • Flat

  • Structure Guided

  • Hypertext

Ανάκτηση Πληροφορίας


Browsing

Flat

  • Δεν υπάρχει συγκεκριμένη οργάνωση στα κείμενα

  • Ο χρήστης επιλέγει τα κείμενα από μία λίστα ή από μία άλλη αναπαράσταση (π.χ. σημεία από ένα 2-D ή 3-D γράφημα)

  • Πολλές μηχανές αναζήτησης παρέχουν κάποιον κατάλογο για browsing

Ανάκτηση Πληροφορίας


Structure guided

Structure Guided

  • Χρησιμοποιείται κάποιος τρόπος οργάνωσης των κειμένων για να διευκολυνθεί η αναζήτηση (π.χ. ιεραρχική δομή).

  • Τα κείμενα ομαδοποιούνται ανάλογα με το θέμα που διαπραγματεύονται.

  • Συνήθως υπάρχει και ένας χάρτης ιστορικού (history map) ώστε να γνωρίζουμε ποια κείμενα έχουμε εξετάσει πρόσφατα.

Ανάκτηση Πληροφορίας


Hypertext

Hypertext

  • Κατευθυνόμενος γράφος, ο οποίος μπορεί να περιέχει κύκλους.

  • Η ύπαρξη σύνδεσης μεταξύ δύο κόμβων δηλώνει οτι οι κόμβοι σχετίζονται.

  • Σε μεγάλα κείμενα ο χρήστης μπορεί να «χάσει το δρόμο του».

  • Χρήση hypertext map ο οποίος δείχνει κάθε φορά σε ποιο σημείο του γράφου βρίσκεται ο χρήστης.

Ανάκτηση Πληροφορίας


Browsing

Σύνοψη Μοντέλων

Υπάρχουν 3 τύποι συστημάτων τα οποία κερδίζουν άμεσα από την ύπαρξη πιο ευέλικτων μοντέλων IR

  • συστήματα βιβλιοθήκης

  • εξειδικευμένα συστήματα IR

  • WEB

Ανάκτηση Πληροφορίας


Browsing

Συστήματα Βιβλιοθήκης

  • Ερευνάται η χρήση μοντέλων τα οποία να αποδίδουν με καλύτερο τρόπο το πως ο χρήστης αντιλαμβάνεται τη χρησιμότητα ενός κειμένου.

  • Συστηματοποίηση του τρόπου με τον οποίο ο χρήστης αναζητά κείμενα.

Ανάκτηση Πληροφορίας


Browsing

Εξειδικευμένα Συστήματα IR

  • Παράδειγμα: σύστημα LEXIS-NEXIS το οποίο διαχειρίζεται πολλά κείμενα που σχετίζονται με νομικές έννοιες σχετικά με επιχειρήσεις.

  • Οι ανάγκες σε ένα τέτοιο σύστημα μπορεί να διαφέρουν σημαντικά από ένα γενικής χρήσης IR σύστημα.

  • Για παράδειγμα, αναζητώντας το νόμο 433/89 είναι χρήσιμο να έχουμε και όλες τις τροπολογίες και τα προεδρικά διατάγματα που έχουν αλλάξει το νόμο κατά καιρούς.

Ανάκτηση Πληροφορίας


Browsing

WEB

google

Μόνο 2% των

συνολικών κειμένων

που δεικτοδοτούνται

είναι κοινά σε όλα

τα search engines

altavista

infoseek

Ανάκτηση Πληροφορίας


Browsing

Μέτρα Απόδοσης

Τρόποι με τους οποίους μετρούμε την ποιότητα ενός IR συστήματος


Browsing

Μέτρα Απόδοσης

  • Precision = # σχετικών κειμένων που επιστρέφονται

    # κειμένων που επιστρέφονται

  • Recall = # σχετικών κειμένων που επιστρέφονται

    # συνολικών σχετικών κειμένων

  • Ο στόχος είναι να μεγιστοποιηθούν και τα δύο.

  • Συνήθως, η σχετικότητα (Relevance) ενός κειμένου ως προς κάποιο ερώτημα είναι κάτι το υποκειμενικό

Ανάκτηση Πληροφορίας


Browsing

Εισαγωγή

  • Μέτρηση Απόδοσης

    • Πόσο καλό είναι ένα σύστημα

    • Συγκρίσεις μεταξύ συστημάτων

  • Τι πρέπει να μετρήσουμε

    • Πόσο είναι ικανοποιημένος ο χρήστης από το αποτέλεσμα

    • Κάλυψη πληροφορίας

    • Τρόπος παρουσίασης

    • Δυσκολία που υπάρχει

    • Αποδοτικό ως προς χρόνο και χώρο

    • Recall

      • τμήμα των σχετικών κειμένων που ανακτώνται

    • Precision

      • τμήμα των ανακτώμενων κειμένων που είναι σχετικά

αποδοτικότητα

Ανάκτηση Πληροφορίας


Browsing

Εισαγωγή

  • Πως μετράμε την απόδοση?

    • Test reference collections:

      • TIPSTER/TREC

      • CACM

      • CISI

      • Cystic Fibrosis

Ανάκτηση Πληροφορίας


Ir evaluation

IR Evaluation

Collection

Relevant

documents (R)

Answer set (A)

relevant &

retrieved (Ra)

  • Recall = |Ra| / |R|

  • Precision = |Ra| / |A|

Ανάκτηση Πληροφορίας


Relevance

Relevance

  • Το σύνολο R δεν είναι γνωστό

  • Relevance:

    • Υποκειμενική

    • Μπορεί να μετρηθεί μέχρι κάποιο βαθμό

  • Πως ένα κείμενο χαρακτηρίζεται ως σχετικό προς το ερώτημα;

    • Σαφής απάντηση σε σαφές ερώτημα

    • Partial Matching

    • Προτείνεται πηγή για περισσότερες πληροφορίες

    • Πληροφορίες για το background

Ανάκτηση Πληροφορίας


Precision recall

Precision/ Recall Καμπύλη

  • Precision - Recall trade-off

  • Μετρούμε το Precision σε διαφορετικά επίπεδα Recall

x

precision

x

x

x

recall

Ανάκτηση Πληροφορίας


Precision recall1

Precision/ Recall Καμπύλη

  • Είναι δύσκολο να διακρίνουμε ποια από τις παρακάτω καμπύλες είναι η καλύτερη:

x

precision

x

x

x

recall

Ανάκτηση Πληροφορίας


Browsing

Παράδειγμα

Ανάκτηση Πληροφορίας


Average precision

Average Precision

  • Average precision at each recall level:

    - average precision at recall level r;

    Nq - the number of queries used;

    Pi(r) – the precision at recall level r for the i-th query.

Ανάκτηση Πληροφορίας


Standard recall levels interpolation procedure

Standard Recall Levels & Interpolation Procedure

  • Η καμπύλη δημιουργείται με 11 επίπεδα recall:

    0%, 10%, 20%, …, 100%

  • Έστω το j-ιοστό επίπεδο recall. Τότε,

Ανάκτηση Πληροφορίας


Interpolated precision

Interpolated Precision

Interpolated precision at 11 standard recall levels

Ανάκτηση Πληροφορίας


Document cutoff levels

Document Cutoff Levels

  • Άλλος τρόπος υπολογισμού:

    • Σταθεροποιούμε τον αριθμό των κειμένων ανά επίπεδο:

      • top 5, top 10, top 20, top 50, top 100, top 500

    • Μέτρηση του precision για αυτά τα επίπεδα

    • Μέση τιμή

  • Τρόπος να εστιάσουμε σε high precision

Ανάκτηση Πληροφορίας


Single value summaries

Single Value Summaries

  • Average Precision vs Recall είναι χρήσιμες τιμές για την περιγραφή της απόδοσης ενός συστήματος σε ένα σύνολο ερωτημάτων.

  • Πως θα μετρήσουμε την απόδοση για κάθε ερώτημα χωριστά;

  • Single value measures:

    • Average Precision at Seen Relevant Documents;

    • R-Precision;

    • Precision Histograms;

    • Summary Table Statistics.

Ανάκτηση Πληροφορίας


Single value summaries1

Single Value Summaries

  • Average Precision at Seen Relevant Documents – a single value summary generated by averaging the precision values obtained after each relevant document is observed.

    Average precision at seen 5 relevant docs =

    (1+0.67+0.5+0.4+0.3)/5 = 0.574

  • R-Precision - a single value summary generated by computing the precision at the R-th position in the ranking;

    • R is the total number of relevant docs for the current query (e.g. number of docs in the set Rq)

      R-precision = 0.4

Ανάκτηση Πληροφορίας


Single value summaries2

Single Value Summaries

  • Precision Histograms – are used to compare the retrieval history of two algorithms.

    • RPA(i) and RPB(i) – R-Precision values of the retrieval algorithms A & B for the i-th query;

    • If RPA/B(i) = 0 – the both algorithms have equivalent performance (in terms of R-Precision);

    • If RPA/B(i) > 0 – better retrieval performance of algorithm A.

Ανάκτηση Πληροφορίας


Single value summaries3

Single Value Summaries

  • Summary Table Statistics – used to store single value measures in a table and to provide a statistical summary regarding the set of all queries in a retrieval task;

    • Usually includes:

      • The number of queries used in the task;

      • The total number of docs retrieved by all queries;

      • The total number of relevant docs, which were effectively retrieved;

      • The total number of relevant docs, which could have been retrieved;

      • And etc...

Ανάκτηση Πληροφορίας


Precision recall2

Precision & Recall

  • Problems using these 2 measures:

    • The proper estimation of max recall for the query requires detailed knowledge of all the documents in the collection;

    • Recall & Precision are related measures which capture different aspects of the set of retrieved docs;

    • Recall & Precision measure the effectiveness over a set queries processed in batch mode;

    • Recall & Precision are easy to define when a linear ordering of the retrieved docs is enforced.

  • Alternative Measures:

    • To combine Recall & Precision into single measure;

    • Measure the informativeness of the retrieval process;

    • Etc…

Ανάκτηση Πληροφορίας


The harmonic mean

The Harmonic Mean

  • The harmonic mean combines Recall & Precision into a single number ranging from 0 to 1:

    P(j) - precision of j-th document in ranking;

    r(j) – recall of j-th document in ranking;

  • If F(j) = 0 – no relevant docs have been retrieved;

  • If F(j) = 1 – all ranked docs are relevant;

  • The harmonic mean assumes high value only when both recall & precision are high.

Ανάκτηση Πληροφορίας


E measure

E-Measure

  • Combine Precision and Recall into one number and allow user to specify whether s/he is more interested in recall or precision:

    P(j) – precision of j-th document in ranking;

    r(j) – recall of j-th document in ranking;

    b - measure of relative importance of precision or recall:

    b > 1 emphasizes precision, b < 1 emphasizes recall

Ανάκτηση Πληροφορίας


User oriented measures

User-Oriented Measures

  • Different users might have a different interpretation of which document is relevant or not

  • User-oriented measures:

    • Coverage ratio:

    • Novelty ratio:

    • Relative ratio – the ratio between the # of relevant docs found and the # of relevant docs the user expected to find

    • Recall effort – the ratio between the # of relevant docs the user expected to find and the # of docs examined in an attempt to find the expected relevant docs.

Ανάκτηση Πληροφορίας


User oriented measures1

User-Oriented Measures

Relevant

documents (R)

Answer set (A)

Relevant Docs

previously unknown to user which were retrieved (Ru)

Relevant Docs

known to user (U)

Relevant Docs

known to user which were retrieved (Rk)

Ανάκτηση Πληροφορίας


Other measures

Other measures

  • Expected search length – useful for dealing with sets of docs weakly ordered

  • Satisfaction – takes into account only the relevant docs

  • Frustration – only the non-relevant docs.

Ανάκτηση Πληροφορίας


Reference collections

Reference Collections

  • TREC collection (Text REtrieval Conference) – 5.8 GB, >1.5 Million Docs;

  • CACM - computer science – 3024 articles;

  • ISI (CISI) – library science – 1460 docs;

  • Cystic Fibrosis (CF) - medicine – 1239 docs;

  • CRAN – aeronautics – 1400 docs;

  • Time – general articles – 423 docs;

  • NPL – electrical engineering – 11429 docs;

  • Etc…

Ανάκτηση Πληροφορίας


Browsing

TREC

  • Benefits:

    • made research systems scale to large collections;

    • allows for somewhat controlled comparisons;

  • Drawbacks:

    • emphasis on high recall, which may be unrealistic for what most users want;

    • very long queries, also unrealistic;

    • comparisons still difficult to make, because systems are quite; different on many dimensions;

    • focus on batch ranking rather than interaction;

    • no focus on the WWW.

Ανάκτηση Πληροφορίας


Trec is changing

TREC is changing

  • Emphasis on specialized “tracks”:

    • Interactive task

    • Natural Language Processing (NLP) task

    • Multilingual tracks (Chinese, Spanish)

    • Filtering track

    • High-Precision

    • High-Performance

  • http://trec.nist.gov/

Ανάκτηση Πληροφορίας


Web search engine evaluation

Web Search Engine Evaluation

  • Evaluation principles:

    • Representative query set (e.g. from user logs)

    • Documents rated from –1 to 2

      • -1: spam, broken link

      • 0: unrelated

      • 1: related

      • 2: good and relevant

    • Document weight according to position in result set

Ανάκτηση Πληροφορίας


Browsing

Σύνοψη

  • Basic measures for evaluating the effectiveness of a retrieval system:

    • Recall & Precision;

    • Single value summaries;

    • Alternative measures;

    • User-oriented measures;

  • Test collections.

Ανάκτηση Πληροφορίας


  • Login