1 / 15

Operational Amplifier Configurations

CSE598A/EE597G Spring 2006. Operational Amplifier Configurations. Jaehyun Lim, Kyusun Choi Department of Computer Science and Engineering The Pennsylvania State University. Ideal Op-Amp. infinite voltage gain (A = ∞, V - =V + for finite V O )

saskia
Download Presentation

Operational Amplifier Configurations

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CSE598A/EE597G Spring 2006 Operational Amplifier Configurations Jaehyun Lim, Kyusun Choi Department of Computer Science and Engineering The Pennsylvania State University

  2. Ideal Op-Amp • infinite voltage gain (A = ∞, V-=V+ for finite VO) • infinite input impedance (i- = i+ = 0) • zero output impedance • infinite bandwidth • zero input offset i- V- VO V+ i+ VO = A(V+ - V-)

  3. Ideal Op-Amp • Inverting Amplifier Configuration • current through R1 = current through Rf (∵ i-=i+= 0) (Vin-V1) / R1 = (V--VO) / Rf • and V- = V+ = 0 • VO = -(Rf / R1)·Vin Rf R1 V- Vin VO

  4. Ideal Op-Amp • Non-Inverting Amplifier Configuration • current through R1 = current through Rf (∵ i-=i+= 0) (VO-V-) / Rf = V- / R1 • and V- = V+ = Vin • VO = (1 + Rf / R1)·Vin Vin VO V- Rf R1

  5. Ideal Op-Amp • Voltage Follower (Unit Gain Buffer) • unit-gain non-inverting amplifier • VO = Vin VO Vin

  6. Non-Ideal Op-Amp • Real World • gain is not infinite  V- ≠ V+ • gate current i+ ≠ 0, i- ≠ 0 (but still negligible) • finite bandwidth requires frequency compensation

  7. Non-Ideal Op-Amp • Inverting Amplifier Configuration Rf R1 V- Vin VO -Rf/R1 VO = A(V+ - V-)  V- = -VO / A (Vin - V-) / R1 = (V- - VO) / Rf VO = Vin 1+(1+Rf/R1)/A note that if A → ∞, VO→ -(Rf / R1)Vin

  8. Non-Ideal Op-Amp • Non-Inverting Amplifier Configuration Vin VO V- A VO = Vin R1 Rf 1+ A R1 R1+Rf note that if A → ∞, VO→ (1+Rf / R1)Vin

  9. Op-Amp with Single Supply • Inverting Amplifier Configuration Rf R1 Vin VO R Vdd / 2 R

  10. Op-Amp with Single Supply • Non-Inverting Amplifier Configuration Vin VO R Vdd / 2 Rf R

  11. Op-Amp with Single Supply • Amplifier Design • well-designed amplifier should have a transition point centered at Vdd / 2 Vdd V VO Vdd/2 VO V+ Vdd / 2 V+ V Vdd / 2

  12. Op-Amp with Single Supply • Examples from Last Class • voltage comparator • V+ = 2.5 V  VO = ? • V+ = 2.501 V  VO = ? • V+ = 2.499 V  VO = ? 5 V 2.5 V VO V+

  13. Op-Amp with Single Supply • Examples from Last Class • ideal case (gain = ∞) • V+ = 2.5 V  VO = 2.5 V(V+ = V- for finite VO and VO centered at 2.5 V) • V+ = 2.501 V  VO = 2.5 + A(V+-V-) = ∞ VO = 5 V (limited to supply) • V+ = 2.449 V  VO = 2.5 + A(V+-V-) = -∞ VO = 0 V (limited to supply) 5 V 2.5 V ∞ VO V+

  14. Op-Amp with Single Supply • Examples from Last Class • gain A = 1000 • V+ = 2.5 V  VO = 2.5 V (VO centered at 2.5 V) • V+ = 2.501 V  VO = 2.5 + 1000(V+-V-) = 3.5 V • V+ = 2.449 V  VO = 2.5 + 1000(V+-V-) = 1.5 V 5 V 2.5 V A VO V+

  15. Op-Amp with Single Supply • HSpice Simulation • .DC analysis • centered at 2.5 V • gain ≈ 1,175 • V+ = 2.501 V  VO = 3.421 V • V+ = 2.449 V  VO = 1.324 V V+ VO

More Related