1 / 34

QTL Mapping Using Mx

QTL Mapping Using Mx. Michael C Neale. Virginia Institute for Psychiatric and Behavioral Genetics Virginia Commonwealth University. Overview. Alternative approach Linkage as Mixture Univariate/Multivariate One/more loci Practical considerations Power Pihat vs covs Larger Sibships.

nerys
Download Presentation

QTL Mapping Using Mx

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. QTL Mapping Using Mx Michael C Neale Virginia Institute for Psychiatric and Behavioral GeneticsVirginia Commonwealth University

  2. Overview • Alternative approach • Linkage as Mixture • Univariate/Multivariate • One/more loci • Practical considerations • Power • Pihat vs covs • Larger Sibships

  3. Schematic of Genome QTL Marker 1 Marker 2 Marker 3 Marker 4 d1 d2 d3 d4

  4. Genetic Heterogeneity Sib pairs IBD at a locus, parents AB and CD AC AD BC BD AC 2 1 1 0 AD 1 2 0 1 BC 1 0 2 1 BD 0 1 1 2

  5. Pi hat approach • 1 Pick a putative QTL location • 2 Compute p(IBD0) p(IBD1) p(IBD2) given • marker data [Mapmaker/sibs] • 3 Compute = p(IBD2) + .5p(IBD1) • 4 Fit model • Repeat 1-4 as necessary for different locations ^ B Elston & Stewart

  6. Major QTL effects DZ twins ^ B .25 1 .5 A1 C1 D1 E1 Q1 Q2 E2 D2 C2 A2 P1 P2

  7. Normal Theory Likelihood Function For raw data in Mx m ln Li=filn [ 3 wjg(xi,:ij,Gij)] j=1 xi- vector of observed scores onn subjects :ij - vector of predicted means Gij - matrix of predicted covariances - functions of parameters

  8. General Likelihood Function Things that may differ over subjects m • Model for Means can differ • Model for Covariances can differ • Weights can differ • Frequencies can differ ln Li=fi ln [ 3 wij g(xi,:ij,Gij)] j=1 i = 1....n subjects (families)

  9. Normal distributionN(:ij,Gij) Likelihood is height of the curve N 0.5 0.4 0.3 G 0.2 likelihood 0.1 0 -4 -3 -2 -1 0 1 2 3 4 : xi

  10. Weighted mixture of models Finite mixture distribution m ln Li=fi ln [ 3 wij g(xi,:ij,Gij)] j=1 j = 1....m models wij Weight for subject i model j e.g., Segregation analysis

  11. Mixture of Normal Distributions Two normals, propotions w1 & w2, different means g 0.5 0.4 w1 x l1 0.3 0.2 w2x l2 0.1 0 xi -4 -3 -2 -1 0 1 2 3 :2 :1 But Likelihood Ratio not Chi-Squared - what is it?

  12. Weighted Likelihood Method • 1 Pick a putative QTL location • 2 Compute p(IBD0) p(IBD1) p(IBD2) given marker data • these are "WEIGHTS" • 3 Compute likelihood of phenotype data under each of 3 IBD conditions • 4 Maximize weighted likelihood of 3 • Repeat 1-4 as necessary for different locations

  13. Mixture method Add them up .5 .25 1 .5 p(IBD1) x A1 C1 D1 E1 Q1 Q2 E2 D2 C2 A2 P1 P2 p(IBD2) x p(IBD0) x 1 0 .25 1 .5 .25 1 .5 A1 C1 D1 E1 Q1 Q2 E2 D2 C2 A2 A1 C1 D1 E1 Q1 Q2 E2 D2 C2 A2 P1 P2 P1 P2

  14. Dataset structure Rectangular format Locus 1 Locus 2 Id sex age P1 P2 IBD0 IBD1 IBD2 IBD0 IBD1 IBD2 1231 1 24 103.5 115.6 .81 .13 .06 .28 .51 .21 1781 0 29 127.4 145.6 .23 .65 .11 .08 .57 .35 1952 1 39 98.5 . .81 .13 .06 .28 .51 .21 2056 1 19 93.5 100.3 . . . .20 .40 .40 Missing data: Phenotypes ML Markers Listwise

  15. Mx Script Mixture method !QTL analysis via Mixture Distribution method !Using marker1 !Using DZ twins only !Analysis of LDL !Dutch Adults #define nvar 1 !different for multivariate #define nsib 2 !number of siblings #NGroups=2

  16. Mx Script Mixture part 2 G1: Parameter Estimates Calculation Begin Matrices; X Lower nvar nvar Free !familial background Z Lower nvar nvar Free !unique environment L Full 1 1 Free !QTL effect M Full 1 nvar Free !means H Full 1 1 End Matrices; Matrix H .5 Begin Algebra; F= X*X'; !familial variance E= Z*Z'; !unique environmental variance Q= L*L'; !variance due to QTL V= F+Q+E; !total variance T= F|Q|E; !parameters in one matrix for standardizing S= T@V~; !standardized variance component estimates End Algebra; Labels Row S standest Labels Col S f^2 q^2 e^2 Labels Row T unstandest Labels Col T f^2 q^2 e^2 End

  17. Mx Script G2: Dizygotic twins #include lipiddzmix.dat Select ibd0m1 ibd1m1 ibd2m1 ldl1 ldl2; Definition ibd0m1 ibd1m1 ibd2m1; Begin Matrices = Group 1; K Full 3 1 !IBD probabilities (from Merlin) U Unit 3 2 End Matrices; Specify K ibd0m1 ibd1m1 ibd2m1 Means U@M; Covariance F+Q+E | F _ F | F+Q+E _ ! IBD 0 Covariance matrix F+Q+E | F+ h@Q_ F+h@Q | F+Q+E _ ! IBD 1 Covariance matrix F+Q+E | F+Q _ F+Q | F+Q+E; ! IBD 2 Covariance matrix Weights K; ! IBD probabilities Start 1 All Start 2.8 M 1 1 1 Option NDecimals=3 Option Multiple Issat End

  18. Mx Script Mixture part 4 ! Test significance of QTL effect Drop L 1 1 1 End

  19. Output Pihat Method Summary of VL file data for group 1 Code -3.000 -2.000 -1.000 1.000 2.000 Number 190.000 190.000 190.000 190.000 190.000 Mean 0.234 0.510 0.256 4.927 4.928 Variance 0.104 0.096 0.096 1.092 1.325 MATRIX F This is a LOWER TRIANGULAR matrix of order 1 by 1 1 1 0.898 MATRIX Q This is a FULL matrix of order 1 by 1 1 1 0.540

  20. Output QTL Effect Present Your model has 4 estimated parameters and 950 Observed statistics -2 times log-likelihood of data >>> 1057.064 Degrees of freedom >>>>>>>>>>>>>>>> 946 QTL Effect Absent Your model has 3 estimated parameters and 950 Observed statistics -2 times log-likelihood of data >>> 1059.025 Degrees of freedom >>>>>>>>>>>>>>>> 947 Difference chi-squared = 1.961 (1 df)

  21. Output Pihat Method QTL Effect Present Your model has 4 estimated parameters and 950 Observed statistics -2 times log-likelihood of data >>> 1057.500 Degrees of freedom >>>>>>>>>>>>>>>> 946 QTL Effect Absent Your model has 3 estimated parameters and 950 Observed statistics -2 times log-likelihood of data >>> 1059.025 Degrees of freedom >>>>>>>>>>>>>>>> 947 Difference chi-squared = 1.525 (1 df)

  22. Summary • SEM - QTL direct relationship • Mx graphical/script approaches • Mixture vs Pihat • Multivariate treatment • Multilocus • Missing Data • Ascertainment

  23. How much more power? • Large sibships much more powerful • Dolan et al 1999 • Pihat simple with large sibships • Solar, Genehunter etc • Pihat shows substantial bias with missing data

  24. Expected IBD Frequencies Sibships of size 2

  25. Expected IBD Frequencies Sibships of size 3

  26. More power in large sibships Dolan, Neale & Boomsma (2000) +Size 2 o Size 3 * Size 4

  27. Number of IBD Combinations As a function of number of sibs in family Sibship Size Number of combinations 2 3 3 10 4 36 5 136 6 528 7 2080 8 7196

  28. Mixture Approach for Pedigrees Some ideas • Iterate configurations within families • Only use non-zero IBD probabilities • Set threshold? • Improves with genotype data • Allows moderated genotypes

  29. Strategy 2 • Families within combinations • Limited # of IBD configurations • Depends on max sibship size • Usually Faster • Can do missing data • Cannot do moderator variables

  30. Multivariate QTL Vectors of variables, Matrices of paths Three component mixture ^ B .25 1 .5 A1 C1 D1 E1 Q1 Q2 E2 D2 C2 A2 P1 P2

  31. Two locus model ^ B2 ^ B1 .25 1 R1 C1 A1 E1 Q1 Q2 E2 A2 C2 R2 P1 P2

  32. Two locus model mixture p(ibd0 R) p(ibd1 R) p(ibd2 R) 0 .5 1 0 0 0 .25 1 .25 1 .25 1 R1 C1 A1 E1 Q1 Q2 E2 A2 C2 R2 R1 C1 A1 E1 Q1 Q2 E2 A2 C2 R2 R1 C1 A1 E1 Q1 Q2 E2 A2 C2 R2 p(ibd0 Q) P1 P2 P1 P2 P1 P2 0 .5 1 .5 .5 .5 .25 1 .25 1 .25 1 R1 C1 A1 E1 Q1 Q2 E2 A2 C2 R2 R1 C1 A1 E1 Q1 Q2 E2 A2 C2 R2 R1 C1 A1 E1 Q1 Q2 E2 A2 C2 R2 p(ibd1 Q) P1 P2 P1 P2 P1 P2 0 .5 1 1 1 1 .25 1 .25 1 .25 1 R1 C1 A1 E1 Q1 Q2 E2 A2 C2 R2 R1 C1 A1 E1 Q1 Q2 E2 A2 C2 R2 R1 C1 A1 E1 Q1 Q2 E2 A2 C2 R2 p(ibd2 Q) P1 P2 P1 P2 P1 P2

  33. Multivariate multilocus multipoint • Eaves Neale & Maes 1996 • 10 minutes for 5 phenotypes • Restart at previous solution • Only fit null model (q=0) once

  34. Not dead yet • Latent variable qtls • Multiple rater • Comorbidity • Repeated measures

More Related