1 / 24

指導教授 : 林志明 級別 : 體積所碩一 學生 : 呂致遠 Mail:s94662010@mail.ncue.tw

A 5.25-GHz CMOS Folded-Cascode Even-Harmonic Mixer for Low-Voltage Applications Ming-Feng Huang, Chung J. Kuo , Senior Member, IEEE , and Shuenn-Yuh Lee , Member, IEEE IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 54, NO. 2, FEBRUARY 2006. 指導教授 : 林志明 級別 : 體積所碩一

morwen
Download Presentation

指導教授 : 林志明 級別 : 體積所碩一 學生 : 呂致遠 Mail:s94662010@mail.ncue.tw

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A 5.25-GHz CMOS Folded-Cascode Even-Harmonic Mixer for Low-Voltage ApplicationsMing-Feng Huang, Chung J. Kuo, Senior Member, IEEE, and Shuenn-Yuh Lee, Member, IEEEIEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 54, NO. 2, FEBRUARY 2006 指導教授:林志明 級別:體積所碩一 學生:呂致遠 Mail:s94662010@mail.ncue.edu.tw 民國95年3月28日

  2. Outline • Abstract • Introduction • Schematic • Microphotograph • Experimental result • Comparison • Conclusion • References

  3. Abstract • 5.25-GHz folded-cascode evenharmonic mixer (FEHM) • Reduce the headroom voltage • A current reuse circuit • Frequency-doubling technique • Conversion gain of 8.3 dB • IIP3of 0.03 dBm • Supply voltage of 0.9 V • LO power of 5.5 dBm • Power consumption of 4.95 mW • IF frequency of 500 kHz

  4. Introduction • The low-voltage RF integrated-circuit (RFIC) development for portable communication equipments has been a focus due to the advances in device technology for high-speed applications. More and more designers have proposed RFIC for high-speed and low-voltage applications.

  5. Direct conversion receiver

  6. Folded technique Low voltage Schematic(EHM) fIF=fRF-2fLO Current reuse circuit Frequency-doubling circuit

  7. High impedance Cancelled Odd Harmonics FEHM

  8. Current reuse circuit

  9. Larger signal (i2LO )

  10. Operational limitation

  11. Schematic of the proposed full monolithic FEHM Reduce Headroom voltage VDD=0.9V VRF=0.5VDD Bias buffer

  12. L_tank:std NT:2.5 PAD NOT ON WAFER ON PCB C_tank:mimcap Microphotograph GND VDD VLO LO+ LO- RF+ RF- IF- IF+ L1:std NT:5.5 ? VRF

  13. Experimental result

  14. Simulation(CG vs Fingers and VLO)

  15. CG VS Fingers

  16. Measurement(CG VS LO power and VLO)

  17. IIP2 & IIP3

  18. Isolation VS LO power

  19. NF VS IF

  20. CG VS RF POWER

  21. SUMMARY OF THE COMPARISON

  22. Conclusion • FEHM with folded technique • Verified by experimental data • Large conversion gain • Low complexity • High operational frequency • Direct conversion receivers.

  23. REFERENCES • [1] M. Saito, M. Ono, R. Fujimoto, H. Tanimoto, N. Ito, T. Yoshitomi, T. • Ohguro, H. S. Momose, and H. Iwai, “0.15-m RF CMOS technology • compatible with logic CMOS for low-voltage operation,” IEEE Trans. • Electron Devices, vol. 45, no. 3, pp. 737–742, Mar. 1998. • [2] T. Manku, G. Beck, and E. J. Shin, “A low-voltage design technique • for RF integrated circuits,” IEEE Trans. Circuits Syst. II, Analog Digit. • Signal Process., vol. 45, no. 10, pp. 1408–1413, Oct. 1998. • [3] F. Svelto, M. Conta, V. D. Torre, and R. Castello, “A low-voltage • topology for CMOS RF mixers,” IEEE Trans. Consumer Electron., vol. • 45, no. 3, pp. 299–309, May 1999. • [4] J. R. Long, “A low-voltage 5.1–5.8-GHz image-reject downconverter • RF IC,” IEEE J. Solid-State Circuits, vol. 35, no. 9, pp. 1320–1328, Sep. • 2000. • [5] E. Abou-Allam, J. J. Nisbet, and M. C. Maliepaard, “Low-voltage • 1.9-GHz front-end receiver in 0.5-m CMOS technology,” IEEE J. • Solid-State Circuits, vol. 36, no. 10, pp. 1434–1443, Oct. 2001. • [6] M. N. El-Gamal, K. H. Lee, and T. K. Tsang, “Very low-voltage (0.8 V) • CMOS receiver frontend for 5 GHz RF applications,” Proc. Inst. Elect. • Eng. Circuits, Devices Syst., vol. 149, pp. 355–362, Oct.–Dec. 2002. • [7] U. Yodprasit and C. C. Enz, “Simple topology for low-voltage and lowpower • RF quadrature oscillators,” Electron. Lett., vol. 40, pp. 458–460, • Apr. 2004. • [8] K.Kwok and H. C. Luong, “Ultra-low-voltage high-performanceCMOS • VCO’s using transformer feedback,” IEEE J. Solid-State Circuits, vol. • 40, no. 3, pp. 652–660, Mar. 2005. • [9] B. Matinpour, S. Chakraborty, and J. Laskar, “Novel DC-offset cancellation • techniques for even-harmonic direct conversion receivers,” IEEE • Trans. Microw. Theory Tech., vol. 48, no. 12, pp. 2554–2559, Dec. 2000. • [10] T. Yamaji, H. Tanimoto, and H. Kokatsu, “An I/Q active balanced harmonic • mixer with IM2 cancellers and a 45 phase shifter,” IEEE J. • Solid-State Circuits, vol. 33, no. 12, pp. 2240–2246, Dec. 1998. • [11] T. Yamaji and H. Tanimoto, “A 2 GHz balanced harmonic mixer for • direct-conversion receivers,” in Proc. IEEE Custom Integrated Circuits • Conf., May 1997, pp. 9.6.1–9.6.4. • [12] Z. Zhang, Z. Chen, and J. Lau, “A 900 MHz CMOS balanced harmonic • mixer for direct conversion receivers,” in Proc. IEEE Radio Wireless • Conf., Sep. 2000, pp. 219–222.

  24. REFERENCES • [13] S. J. Fang, S. T. Lee, and D. J. Allstot, “A 2 GHz CMOS even harmonic • mixer for direct conversion receivers,” in Proc. IEEE Int. Symp. Circuits • Syst. , vol. 4, 2002, pp. 807–810. • [14] L. Sheng, J. C. Jensen, and L. E. Larson, “A wide-bandwidth Si/SiGe • HBT direct conversion subharmonic mixer/downconverter,” IEEE J. • Solid-State Circuits, vol. 35, no. 9, pp. 1329–1337, Sep. 2000. • [15] M. Goldfarb, E. Balboni, and J. Cavey, “Even harmonic double-balanced • active mixer for use in direct conversion receivers,” IEEE J. Solid-State • Circuits, vol. 38, no. 10, pp. 1762–1766, Oct. 2003. • [16] Z. Zhang, L. Tsui, Z. Chen, and J. Lau, “A CMOS self-mixing-free • front-end for direct conversion applications,” in Proc. IEEE Int. Circuits • Syst. Symp., May 2001, pp. 386–389. • [17] S.-Y. Lee, M.-F. Huang, and C. J. Kuo, “Analysis and implementation of • a CMOS even harmonic mixer with current reuse for heterodyne/direct • conversion receivers,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, • no. 9, pp. 1741–1751, Sep. 2005. • [18] M.-F. Huang, S.-Y. Lee, and C. J. Kuo, “A CMOS even harmonic mixer • with current reuse for low power applications,” in Proc. ACM Int. Low • Power Electron. Design Symp., Aug. 2004, pp. 290–295. • [19] , “Design and analysis of a CMOS even harmonic mixer with current • reuse circuits,” in Proc. IEEE Asia–Pacific Circuits Syst. Conf., Dec. • 2004, pp. 269–272. • [20] A. N. Karanicolas, “A 2.7-V 900-MHz CMOS LNA and mixer,” IEEE • J. Solid-State Circuits, vol. 31, no. 12, pp. 1939–1944, Dec. 1996. • [21] S.-G. Lee and J.-K. Choi, “Current-reuse bleeding mixer,” Electron. • Lett., vol. 36, pp. 696–697, Apr. 2000. • [22] B. Razavi, RF Microelectronics. Englewood Cliffs, NJ: Prentice-Hall, • 1998. • [23] , Design of Analog CMOS Integrated Circuits, Singapore: Mc- • Graw-Hill, 2001. • [24] L. Sheng and L. E. Larson, “An Si–SiGe BiCMOS direct-conversion • mixer with second-order and third-order nonlinearity cancellation for • WCDMA applications,” IEEE Trans. Microw. Theory Tech., vol. 51, no. • 11, pp. 2211–2220, Nov. 2003. • [25] E. A. M. Klumperink, S. M. Louwsma, G. J. M. Wienk, and B. Nauta, • “A CMOSswitched transconductor mixer,” IEEE J. Solid-State Circuits, • vol. 39, no. 8, pp. 1231–1240, Aug. 2004.

More Related