Selective atomic layer deposition of tio 2 on silicon copper patterned substrates
This presentation is the property of its rightful owner.
Sponsored Links
1 / 15

Selective Atomic Layer Deposition of TiO 2 on Silicon/Copper-patterned Substrates PowerPoint PPT Presentation


  • 105 Views
  • Uploaded on
  • Presentation posted in: General

Selective Atomic Layer Deposition of TiO 2 on Silicon/Copper-patterned Substrates. UIC REU 2011 AMReL , University of Illinois at Chicago Abigail Jablansky Department of Chemical and Biomolecular Engineering, University of Pennsylvania. What is ALD?. Atomic layer deposition Method:

Download Presentation

Selective Atomic Layer Deposition of TiO 2 on Silicon/Copper-patterned Substrates

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Selective atomic layer deposition of tio 2 on silicon copper patterned substrates

Selective Atomic Layer Deposition of TiO2 on Silicon/Copper-patterned Substrates

UIC REU 2011

AMReL, University of Illinois at Chicago

Abigail Jablansky

Department of Chemical and Biomolecular Engineering, University of Pennsylvania


What is ald

What is ALD?

  • Atomic layer deposition

  • Method:

    • Precursor (TDEAT)

    • Purge (N2)

    • Oxidant (H2O)

    • Purge (N2)

  • Batch adsorption process

  • Easily controlled but

    time-consuming

  • Characterized with ellipsometry,

    X-ray photoelectron spectroscopy

    (XPS)

  • Diverse applications

www.cambridgenanotech.com/ald


Copper and silicon

Copper and Silicon

  • Conductive substrate

  • Small channels of conduction in microelectronics

  • Need a thin barrier layer on silicon

  • Copper oxidizes more easily

    • Selective ALD (SALD)

    • Native oxide

www.electroiq.com


Native oxides

Native Oxides

  • Prevention

    • Self-assembling

      molecules1

  • Minimization

    • Limited air exposure2

    • Few cycles3

  • Reduction

    • GaAs oxide remains under HfO2 but converted under Al2O34

Tao, Q.; Jursich, G.; Takoudis, C. App. Phys. Lett.2010, 96, 192105

1Chen, R.; Kim, H.; McIntyre, P.C.; Bent, S.F. Chem. Mater.2005, 17, 536.

2Lee, H.D.; Feng, T.; Yu, L.; Mastrogiovanni, D.; Wan, A.; Gustafsson, T.; Garfunkel, E. App. Phys. Lett.2009, 94, 222108.

3Tao, Q.; Overhage, K.; Jursich, G.; Takoudis, C. Submitted to Journal of Physi Chem. C. 2011.

4Frank, M.M.; Wilk, G.D.; Starodub, D.; Gustafsson, T.; Garfunkel, E.; Chabal, Y.J.; Grazul, J.; Muller, D.A. App. Phys. Lett.2005, 86, 152904.


Copper oxides

Cu2O (cuprous oxide)

Linear

Most stable copper compounds at high T

Forms ammine under NH35

CuO (cupric oxide)

Square planar

Decomposes at high T to Cu2O + O2

H2 or CO reduction at 250oC5

Copper Oxides

  • Cu2O forms first, then CuOif stable6

  • Reduction methods

5Cotton, F.A.; Wilkinson, G. Advanced Inorganic Chemistry, 2nd ed. New York: Interscience Publishers, 1966, pp.894-902.

6Zhu, Y.; Mimura, K.; Lim, J.; Isshiki, M.; Jiang, Q. Metal. and Mineral Trans. A. 2006, 37A, 1231.


Project description

Project Description

  • ALD of TiO2 onto Si/Cu wafers

    • Precursor: tetrakis(diethylamino)titanium (TDEAT)

    • Oxidizer: water

  • Compare 24-hr Cu (1 nm native oxide) exposure to 1-hr7

  • Minimize exposure from reactor to ellipsometer, x-ray photoelectron spectroscopy (XPS)

7Tao, Q. PhD Dissertation, University of Illinois at Chicago, 2011.


Reactor schematic

Ice bath

Hot wall reactor

Reactor Schematic

Tao, Q. PhD Dissertation, University of Illinois at Chicago, 2011.


Experimental setup

Experimental Setup


Characterization

Characterization

Ellipsometry

X-ray photoelectron spectroscopy (XPS)

X-rays are energy source

Measures kinetic energy, number of escaping electrons

  • Reflects light off thin films

  • Measures polarization after reflection


Results

Results

  • Verified Tao’s work7

    • Constant growth rate = linear growth

7Tao, Q. PhD Dissertation, University of Illinois at Chicago, 2011.


Troubleshooting

Troubleshooting

  • Temperature

    • Increases along path to reactor

    • Keep oxidizer cold

  • Pressure

    • “Resting pressure” around 0.176 torr

    • Cycles during deposition

  • N2 tank, H2O level in bubbler

  • Check ellipsometer

  • Precursor level, clogged pipes


Results cont

Results (cont.)

The colors could represent a deposition layer thickness profile or a chemical vapor deposition (CVD).


Summary

Summary

  • Objective: SALD of TiO2 on Si for microelectronic applications

  • Method: reduce native oxide on Cu

    • Minimize air exposure (in progress)

    • In situ reduction (future work)

  • Characterization: ellipsometry, XPS

  • Results to date verify prior research

  • Not enough data to conclude about TiO2 on copper

  • Troubleshooting, design setbacks are important parts of engineering


Acknowledgements

Acknowledgements

  • National Science Foundation, EEC-NSF Grant # 1062943

  • CMMI-NSF Grant # 1134753

  • Jorge I. Rossero A.

  • RunshenXu

  • Arman Butt

  • Dr. Jursich

  • Dr. Takoudis


References

References

  • Chen, R.; Kim, H.; McIntyre, P.C.; Bent, S.F. Chem. Mater.2005, 17, 536.

  • Lee, H.D.; Feng, T.; Yu, L.; Mastrogiovanni, D.; Wan, A.; Gustafsson, T.; Garfunkel, E. App. Phys. Lett.2009, 94, 222108.

  • Tao, Q.; Jursich, G.; Takoudis, C. App. Phys. Lett.2010, 96, 192105

  • Tao, Q.; Overhage, K.; Jursich, G.; Takoudis, C. Submitted to Journal of Phys. Chem. C. 2011.

  • Frank, M.M.; Wilk, G.D.; Starodub, D.; Gustafsson, T.; Garfunkel, E.; Chabal, Y.J.; Grazul, J.; Muller, D.A. App. Phys. Lett.2005, 86, 152904.

  • Cotton, F.A.; Wilkinson, G. Advanced Inorganic Chemistry, 2nd ed. New York: Interscience Publishers, 1966, pp.894-902.

  • Zhu, Y.; Mimura, K.; Lim, J.; Isshiki, M.; Jiang, Q. Metal. and Mineral Trans. A. 2006, 37A, 1231.

  • Tao, Q. PhD Dissertation, University of Illinois at Chicago, 2011.

  • Falkenstein, Z.; Hakovirta, M.; Nastasi, M. Thin Solid Films. 2001, 381, 84.

  • Tompkins, H.G.; Allara, D.L. J. Colloid and Interface Science. 1974, 49, 410.

  • Sakata, Y.; Domen, K.; Maruya, K.-I.; Onishi, T. Appl. Spec.1988, 42, 442.


  • Login