1 / 36

Lecture 7

Lecture 7. Data Abstraction. Pairs and Lists. (Sections 2.1.1 – 2.2.1). Export only what is needed. Interface. Implementation. Procedural abstraction. Publish: name, number and type of arguments (and conditions they must satisfy)

harvey
Download Presentation

Lecture 7

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Lecture 7 Data Abstraction. Pairs and Lists. (Sections 2.1.1 – 2.2.1) מבוא מורחב שיעור 7

  2. Export only what is needed. Interface Implementation Procedural abstraction • Publish: name, number and type of arguments • (and conditions they must satisfy) • type of procedure’s return value • Guarantee: the behavior of the procedure • Hide: local variables and procedures, • way of implementation, • internal details, etc. מבוא מורחב שיעור 7

  3. Export only what is needed. Interface Implementation Data-object abstraction • Publish:constructors, selectors • Guarantee: the behavior • Hide: local variables and procedures, • way of implementation, • internal details, etc. מבוא מורחב שיעור 7

  4. An example: Rational numbers We would like to represent rational numbers. A rational number is a quotient a/b of two integers. Constructor: (make-rat a b) Selectors: (numer r) (denom r) Guarantee:(numer (make-rat a b)) = a (denom (make-rat a b)) = b מבוא מורחב שיעור 7

  5. An example: Rational numbers We would like to represent rational numbers. A rational number is a quotient a/b of two integers. Constructor: (make-rat a b) Selectors: (numer r) (denom r) A betterGuarantee: (numer (make-rat a b)) a = b (denom (make-rat a b)) A weaker condition, but still sufficient! מבוא מורחב שיעור 7

  6. We can now use the constructors and selectors to implement operations on rational numbers: (add-rat x y) (sub-rat x y) (mul-rat x y) (div-rat x y) (equal-rat? x y) (print-rat x) A form of wishful thinking: we don’t know how make-ratnumer anddenom are implemented, but we use them. מבוא מורחב שיעור 7

  7. Implementing the operations (define (add-rat x y);n1/d1 + n2/d2 = (n1.d2 + n2.d1) / (d1.d2) (make-rat (+ (* (numer x) (denom y)) (* (numer y) (denom x))) (* (denom x) (denom y)))) (define (sub-rat x y) … (define (mul-rat x y) (make-rat (* (numer x) (numer y)) (* (denom x) (denom y)))) (define (div-rat x y) (make-rat (* (numer x) (denom y)) (* (denom x) (numer y)))) (define (equal-rat? x y) (= (* (numer x) (denom y))(* (numer y) (denom x)))) מבוא מורחב שיעור 7

  8. Using the rational package (define (print-rat x) (newline) (display (numer x)) (display ”/”) (display (denom x))) (define one-half (make-rat 1 2)) (print-rat one-half)  1/2 (define one-third (make-rat 1 3)) (print-rat (add-rat one-half one-third))  5/6 (print-rat (add-rat one-third one-third))  6/9 מבוא מורחב שיעור 7

  9. Programs that use rational numbers add-rat sub-rat mul-rat… make-rat numer denom Abstraction barriers rational numbers in problem domain rational numbers as numerators and denumerators מבוא מורחב שיעור 7

  10. Gluing things together We still have to implement numer, denom, and make-rat We need a way to glue things together… A pair: (define x (cons 1 2)) (car x)  1 (cdr x)  2 מבוא מורחב שיעור 7

  11. Pair: A primitive data type. Constructor: (cons a b) Selectors: (car p) (cdr p) Guarantee:(car (cons a b)) = a (cdr (cons a b)) = b Abstraction barrier: We say nothing about the representation or implementation of pairs. מבוא מורחב שיעור 7

  12. Pairs (define x (cons 1 2)) (define y (cons 3 4)) (define z (cons x y)) (car (car z))  1 ;(caar z) (car (cdr z))  3 ;(cadr z) מבוא מורחב שיעור 7

  13. Implementing make-rat, numer, denom (define (make-rat n d) (cons n d)) (define (numer x) (car x)) (define (denom x) (cdr x)) מבוא מורחב שיעור 7

  14. Programs that use rational numbers add-rat sub-rat mul-rat... make-rat numer denom cons car cdr Abstraction barriers rational numbers in problem domain rational numbers as numerators and denumerators rational numbers as pairs מבוא מורחב שיעור 7

  15. Abstraction Violation Alternative implementation for add-rat (define (add-rat x y) (cons (+ (* (car x) (cdr y)) (* (car y) (cdr x))) (* (cdr x) (cdr y)))) If we bypass an abstraction barrier, changes to one level may affect many levels above it. Maintenance becomes more difficult. מבוא מורחב שיעור 7

  16. Rationals - Alternative Implementation • In our current implementation we keep 10000/20000 • as such and not as 1/2. • This: • Makes the computation more expensive. • Prints out clumsy results. A solution: change the constructor (define (make-rat a b) (let ((g (gcd a b))) (cons (/ a g) (/ b g)))) No other changes are required! מבוא מורחב שיעור 7

  17. Reducing to lowest terms, another way (define (make-rat n d) (cons n d)) (define (numer x) (let ((g (gcd (car x) (cdr x)))) (/ (car x) g))) (define (denom x) (let ((g (gcd (car x) (cdr x)))) (/ (cdr x) g))) מבוא מורחב שיעור 7

  18. How can we implement pairs? (first solution) (define (cons x y) (lambda (f) (f x y))) (define (car z) (z (lambda (x y) x))) (define (cdr z) (z (lambda (x y) y))) מבוא מורחב שיעור 7

  19. Name Value p (lambda(f) (f 1 2)) ( (lambda(f) (f 1 2)) (lambda (x y) x)) ( (lambda(x y) x) 1 2 ) > 1 How can we implement pairs? (first solution, cont’) > (define p (cons 1 2)) > (car p) (define (cons x y) (lambda (f) (f x y))) (define (car z) (z (lambda (x y) x))) (define (cdr z) (z (lambda (x y) y))) מבוא מורחב שיעור 7

  20. How can we implement pairs?(Second solution: message passing) (define (cons x y) (lambda (m) (cond ((= m 0) x) ((= m 1) y) (else (error "Argument not 0 or 1 -- CONS" m)))))) (define (car z) (z 0)) (define (cdr z) (z 1)) מבוא מורחב שיעור 7

  21. ((lambda(m) (cond ..)) 0) (cond ((= 0 0) 3) ((= 0 1) 4) (else ...))) > 3 Implementing pairs (second solution, cont’) Name Value > (define p (cons 3 4)) p (lambda(m) (cond ((= m 0) 3) ((= m 1) 4) (else ..))) > (car p) (define (cons x y) (lambda (m) (cond ((= m 0) x) ((= m 1) y) (else ...))) (define (car z) (z 0)) (define (cdr z) (z 1)) מבוא מורחב שיעור 7

  22. Implementation of Pairs -The way it is really done • Scheme provides an implementation of pairs, so we do not need to use these “clever” implementations. • The natural implementation is by using storage. • The two solutions we presented show that the distinction between storage and computation is not always clear. • Sometimes we can trade data for computation. • The solutions we showed have their own significance: • The first is used to show that lambda calculus can simulate other models of computation (theoretical importance). • The second – message passing – is the basis for Object Oriented Programming. We will return to it later. מבוא מורחב שיעור 7

  23. a 2 1 Box and Pointer Diagram • (define a (cons 1 2)) • A pair can be implemented directly using two “pointers”. • Originally on IBM 704: • (car a)Contents of Address part of Register • (cdr a)Contents of Decrement part of Register מבוא מורחב שיעור 7

  24. 4 3 1 2 Box and pointer diagrams (cont.) • (cons (cons 1 (cons 2 3)) 4) מבוא מורחב שיעור 7

  25. Pairs have the closure property: • We can pair pairs, pairs of pairs etc. • (cons (cons 1 2) 3) 3 2 1 Compound Data A closure property: The result obtained by creating a compound data structure can itself be treated as a primitive object and thus be input to the creation of another compound object. מבוא מורחב שיעור 7

  26. 3 1 2 Lists The empty list (a.k.a. null or nill) • (cons 1 (cons 3 (cons 2 ’()))) • Syntactic sugar:(list 1 3 2) מבוא מורחב שיעור 7

  27. Formal Definition of a List A list is either • ’() -- The empty list • A pair whose cdr is a list. Lists are closed under the operations consand cdr: • If lst is a non-empty list, then (cdr lst) is a list. • If lst is a list and x is arbitrary, then (cons x lst) is a list. מבוא מורחב שיעור 7

  28. <x1> <x2> <xn> Lists (list <x1> <x2> ... <xn>) is syntactic sugar for (cons <x1> (cons <x2> ( … (cons <xn> ’() )))) מבוא מורחב שיעור 7

  29. 1 3 2 2 3 Lists (examples) The following expressions all result in the same structure: (cdr (list 1 2 3)) (cdr (cons 1 (cons 2 (cons 3 ’() )))) (cons 2 (cons 3 ’() )) (list 2 3) (cons 3 (list 1 2)) (cons 3 (cons 1 (cons 2 ’() ))) (list 3 1 2) and similarly the following מבוא מורחב שיעור 7

  30. 1 4 3 2 4 3 1 2 4 3 1 2 More Elaborate Lists (list 1 2 3 4) (cons (list 1 2) (list 3 4)) (list (list 1 2) (list 3 4)) • Prints as (1 2 3 4) • Prints as ((1 2) 3 4) • Prints as ((1 2) (3 4)) מבוא מורחב שיעור 7

  31. p1 3 p 1 2 p2 Yet More Examples • (define p (cons 1 2)) • p2 ( (1 . 2) (1 . 2) ) • p (1 . 2) • (define p1 (cons 3 p) • p1 (3 1 . 2) • (define p2 (list p p)) מבוא מורחב שיעור 7

  32. The Predicate Null? null? : anytype -> boolean (null? <z>) #t if <z> evaluates to empty list #f otherwise (null? 2)  #f (null? (list 1))  #f (null? (cdr (list 1)))  #t (null? ’())  #t (null? null)  #t מבוא מורחב שיעור 7

  33. The Predicate Pair? pair? : anytype -> boolean (pair? <z>) #tif <z> evaluates to a pair #f otherwise. (pair? (cons 1 2))  #t (pair? (cons 1 (cons 1 2)))  #t (pair? (list 1))  #t (pair? ’())  #f (pair? 3)  #f (pair? pair?)  #f מבוא מורחב שיעור 7

  34. The Predicate Atom? atom? : anytype -> boolean (define (atom? z) (and (not (pair? z)) (not (null? z)))) (define (square x) (* x x)) (atom? square)  #t (atom? 3)  #t (atom? (cons 1 2))  #f מבוא מורחב שיעור 7

  35. (define digits1 (cons 0 digits)) • digits1 • (define l (list 0 digits)) • l ? More examples • (define digits (list 1 2 3 4 5 6 7 8 9)) ? (0 1 2 3 4 5 6 7 8 9) (0 (1 2 3 4 5 6 7 8 9)) מבוא מורחב שיעור 7

  36. The procedurelength • (define digits (list 1 2 3 4 5 6 7 8 9)) • (length digits) 9 • (define l null) • (length l) 0 • (define l (cons 1 l)) • (length l) 1 (define (length l) (if (null? l) 0 (+ 1 (length (cdr l))))) מבוא מורחב שיעור 7

More Related