1 / 33

Harmonic Analysis for Observed Flow Representation

This text explains how the observed flow can be represented as a sum of harmonics and how to find the minimum distance between observed and theoretical values using harmonic representation.

guffey
Download Presentation

Harmonic Analysis for Observed Flow Representation

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Harmonic Analysis The observed flow u’ may be represented as the sum of M harmonics: u’ = u0 + ΣjM=1Aj sin (j t + j) For M = 1 harmonic (e.g. a diurnal or semidiurnal constituent): u’ = u0+ A1 sin (1t + 1) With the trigonometric identity: sin (A + B) = cosBsinA + cosAsinB u’ = u0 + a1 sin (1t ) + b1 cos (1t ) taking: a1= A1 cos 1 b1= A1 sin 1 so u’ is the ‘harmonic representation’

  2. Using u’ = u0 + a1 sin (1t ) + b1 cos (1t ) Then: 2 = ΣN {u 2 - 2uu0 - 2ua1 sin (1t ) - 2ub1 cos (1t ) + u02 + 2u0a1 sin (1t ) + 2u0b1 cos (1t ) + 2a1 b1 sin (1t ) cos (1t ) + a12sin2 (1t ) + b12cos2 (1t ) } The squared errors between the observed current u and the harmonic representation may be expressed as 2 : 2 = ΣN [u - u’ ]2 = u 2 - 2uu’ + u’ 2 Then, to find the minimum distance between observed and theoretical values we need to minimize 2 with respect to u0 a1and b1, i.e., δ 2/ δu0 , δ 2/ δa1 , δ 2/ δb1 : δ2/ δu0 = ΣN {-2u +2u0 + 2a1 sin (1t ) + 2b1 cos (1t ) } = 0 δ2/ δa1 = ΣN { -2u sin (1t ) +2u0 sin (1t ) + 2b1 sin (1t ) cos (1t ) + 2a1 sin2(1t ) } = 0 δ2/ δb1 = ΣN {-2u cos (1t ) +2u0 cos (1t ) + 2a1 sin (1t ) cos (1t ) + 2b1 cos2(1t ) } = 0

  3. ΣN { u = u0 + a1 sin (1t ) + b1 cos (1t ) } ΣN { u sin (1t ) = u0 sin (1t ) + b1 sin (1t ) cos (1t ) + a1 sin2(1t ) } ΣN { u cos (1t ) = u0 cos (1t ) + a1 sin (1t ) cos (1t ) + b1 cos2(1t ) } ΣN u N ΣN sin (1t ) ΣN cos (1t ) u0 ΣN {-2u +2u0 + 2a1 sin (1t ) + 2b1 cos (1t ) } = 0 ΣN u sin (1t ) = ΣN sin (1t ) ΣN sin2(1t ) ΣN sin (1t ) cos (1t ) a1 ΣN u cos (1t ) ΣN cos (1t ) ΣN sin (1t ) cos (1t ) ΣN cos2(1t ) b1 ΣN {-2u sin (1t ) +2u0 sin (1t ) + 2b1 sin (1t ) cos (1t ) + 2a1 sin2(1t ) } = 0 ΣN { -2u cos (1t ) +2u0 cos (1t ) + 2a1 sin (1t ) cos (1t ) + 2b1 cos2(1t ) } = 0 X = A-1 B Rearranging: And in matrix form: B = A X

  4. Finally... The residual or mean is u0 The phase of constituent 1 is: 1 = atan( b1 / a1 ) The amplitude of constituent 1 is: A1 = ( b12+ a12 )½ Pay attention to the arc tangent function used. For example, in IDL you should use atan (b1,a1) and in MATLAB, you should use atan2

  5. Matrix A is then: N ΣN sin (1t ) ΣN cos (1t ) ΣN sin (2t ) ΣN cos (2t ) ΣN sin (1t ) ΣN sin2(1t ) ΣN sin (1t ) cos (1t ) ΣN sin (1t ) sin (2t ) ΣN sin (1t ) cos (2t ) ΣN cos (1t ) ΣN sin (1t ) cos (1t ) ΣN cos2(1t ) ΣN cos (1t ) sin (2t ) ΣN cos (1t ) cos (2t ) ΣN sin (2t ) ΣN sin (1t ) sin (2t ) ΣN cos (1t ) sin (2t ) ΣN sin2(2t ) ΣN sin (2t ) cos (2t ) ΣN cos (2t ) ΣN sin (1t ) cos (2t ) ΣN cos (1t ) cos (2t ) ΣN sin (2t ) cos (2t ) ΣN cos2 (2t ) Remember that: X = A-1 B and B = u0 a1 b1 a2 b2 ΣN u ΣN u sin (1t ) X = ΣN u cos (1t ) ΣN u sin (2t ) ΣN u cos (2t ) For M = 2 harmonics (e.g. diurnal and semidiurnal constituents): u’ = u0+ A1 sin (1t + 1) + A2 sin (2t + 2)

  6. Goodness of Fit: Σ [< uobs > - upred] 2 ------------------------------------- Σ [<uobs > - uobs] 2 Root mean square error: [1/N Σ (uobs - upred) 2] ½

  7. Fit with M2 only

  8. Fit with M2, K1

  9. Fit with M2, S2, K1 Rayleigh Criterion: record frequency ≤ ω1 – ω2

  10. Tidal Ellipse Parameters M2 K1 Major axis: M minor axis: m ellipticity = m/ M Phase Orientation

  11. Tidal Ellipse Parameters amplitude of the counter-clockwise rotary component phase of the clockwise rotary component phase of the counter-clockwise rotary component Ellipse Coordinates: ua, va, up, vpare the amplitudes and phases of the east-west and north-south components of velocity amplitude of the clockwise rotary component The characteristics of the tidal ellipses are: Major axis = M = Qcc + Qc minor axis = m = Qcc - Qc ellipticity = m / M Phase = -0.5 (thetacc - thetac) Orientation = 0.5 (thetacc + thetac)

  12. M2 K1

  13. Two Years of Tide Data at Trident Pier, Florida (Cape Canaveral) Use “U-tide” routine

  14. “utide” scripts

  15. SA = Solar annual SSA = Solar Semiannual MSM = Lunar synodic monthly (29.53 d) MM = Lunar Monthly (27.55 d) MSF = Lunisolar synodic fortnightly (14.76 d) MF = Lunisolar fortnightly (13.66 d)

  16. SA = Solar annual SSA = Solar Semiannual MSM = Lunar synodic monthly (29.53 d) MM = Lunar Monthly (27.55 d) MSF = Lunisolar synodic fortnightly (14.76 d) MF = Lunisolar fortnightly (13.66 d)

  17. Complex Demodulation Time series X(t)taken as nearly periodic plus non-periodic Z(t), still varying in time. Amplitude A and phase ϕof the nearly periodic signal are allowed to be time-dependent but vary slowly compared to the frequency ω. X(t) = A(t) cos(ωt +ϕ(t))+ Z(t) Demodulate by multiplying times Low-pass filter to remove frequencies at or above  Varies slowly, independent of  Varies at frequency 2 Varies at frequency 

  18. Varies slowly, independent of  (low-pass filter smooths this term – denoted by ’) Separate (or extract) A’ and ’

  19. Sea level at Cape Cañaveral, Florida m 2 years of data ( variables t and s) X(t) = A(t) cos(ωt +ϕ(t))+ Z(t)

  20. Ensenada de la Paz

  21. Amplitude of complex demodulated series at semidiurnaland diurnal frequencies Ensenada de La Paz, Mexico

  22. YAVAROS BAY, MEXICO Dworak, J. A., and J. Gomez-Valdes (2005), J. Geophys. Res., 110, C01007, doi:10.1029/2003JC001865.

  23. Station M Dworak, J. A., and J. Gomez-Valdes (2005), J. Geophys. Res., 110, C01007, doi:10.1029/2003JC001865.

  24. Puerto Morelos Coral Reef Lagoon Puerto Morelos Lagoon North America Atlantic Ocean Northern Inlet Gulf of Mexico Pargos Spring Mexico Caribbean Sea Yucatan Peninsula Central Inlet Pacific Ocean Coronado et al. 2007 Southern Inlet Sabrina Parra

  25. WINDOWED FOURIER TRANSFORM

More Related