Bab 1
Sponsored Links
This presentation is the property of its rightful owner.
1 / 36

Bab 1 PowerPoint PPT Presentation


  • 198 Views
  • Uploaded on
  • Presentation posted in: General

Bab 1. Anava satu dan Dua Jalan. Indikator. Menjelaskan konsep dasar analisis variansi Melakukan pengujian, baik untuk analisis variansi satu jalan maupun dua jalan Melakukan uji perbandingan ganda ; Scheffe.

Download Presentation

Bab 1

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Bab 1

AnavasatudanDuaJalan


Indikator

  • Menjelaskan konsep dasar analisis variansi

  • Melakukan pengujian, baik untuk analisis variansi satu jalan maupun dua jalan

  • Melakukan uji perbandingan ganda ; Scheffe


 Versatile statistical tool for studying the relation between a dependent variable and one or more independent variable

  • Dapat digunakan pada data yang diperoleh dari hasil eksperimen dan observasi

  • Analisa variansi (ANOVA) adalah suatu metoda untuk menguji hipotesis kesamaan rata-rata dari tiga atau lebih populasi

     What different ANOVA with regression ?

    ANOVA  Variabel independen ; qualitatif

Review : What is Analysis of variance (ANOVA) ?


LATAR BELAKANG ANOVA

ANOVA adalah singkatan dari Analysis of Variance. Latar belakang dikembangkan metoda ini karena ingin dilakukan testing terhadap rata-rata populasi yg mengalami “perlakuan” yg berbeda-beda. Pertanyaannya : apakah perbedaan rata-rata antara berbagai grup yg mengalami perlakuan berbeda tsb signifikan atau tidak.

Asumsi untuk ujia ANOVA adalah:

Populasi semuanya normal

Standard deviasi populasi sama

Populasi independen

MIsal ada 4 grup A,B,C dan D dengan rata-rata sampel xA, xB, xC dan xD. Ingin diketahui apakah rata-rata populasi yg terkait dengan sampel tsb sama? Tentu saja kita bisa melakukan uji statistik bagi tiap sepasang mean, misal μA=μB lalu μA=μC dst. Semuanya ada 6 pasangan yg mungkin, jadi ada 6 uji yg harus dilakukan. Untuk masing-masing dilakukan test-t


Apa kelemahan test-t sepasang-sepasang ini?

Banyak test harus dilakukan

Kesalahan tipe-1 yg besar

Misal tiap-tidap test-t diuji dengan tingkat signifikan 0.05, berarti probabilitas H0 diterima dan keputusan benar 0.95. Karena ada 6 pasangan test (dalam contoh sebelumnya) maka probabilitas telah dibuat keputusan benar karena menerima H0 yg benar adalah 0.95*0.95*0.95*0.95*0.95*0.95 = 0.735

Jadi probabilitas melakukan error tipe I, yaitu H0 benar tapi ditolak adalah 1-0.735 = 0.265!

Oleh karena diperlukan uji yg dapat sekaligus membandingkan kesamaan rata-rata berbagai grup tsb serempak.


μA

μB

μC

Ide dasar test ANOVA adalah perbedaan rata-rata populasi ditentukan oleh dua faktor yaitu variasi data dalam 1 sampel dan variasi data antar sampel. Perbedaan rata-rata antar populasi nyata jika variasi data antar sampel besar sedangkan variasi data dalam 1 sampel kecil.

TEST ANOVA – Ide


Single Factor Analysis of Variance – AnavasatuJalan - RRL

  • Misalkankitamempunyaikpopulasi.

  • Dari masing-masingpopulasidiambilsampelberukurann.

  • Misalkan pula bahwakpopulasiitubebasdanberdistribusi normal dengan rata-rata 1, 2, …. dan kdanvariansi 2.

  • Hipotesa :

    • H0 : 1 = 2 = … = k

    • H1 : Ada rata-rata yang tidaksama

  • Secara umum, jika n observasi dikenakan perlakuan maka model linier statistik :


  • Model 1 disebut dengan one- way atau single factor analysis of variance , do you know why?

  • Hanya satu faktor perlakuan yang diselidiki

  • Perlakuan yang digunakan dalam percobaan diusahakan se-seragam mungkin, sehingga biasa juga disebut dengan completely randomized design (Rancangan Random Lengkap)


Jika perlakuan dipilih ttt oleh eksperimenter maka kesimpulan uji tidak bisa digeneralisasikan untuk populasi perlakuan  MODEL EFEK TETAP

Jika perlakuan dipilih random dari populasi perlakuan oleh eksperimenter maka kesimpulan uji dapat digeneralisasikan ke seluruh populasi perlakuan  MODEL EFEK RANDOM/ components of variance model

Tipe model 1.1


  • Analysis of variance (ANOVA) digunakanuntukmenyelidikipengaruh/ efekutamadaninteraksidarivariabelindependen (disebutdengan “faktor”

  • Pengaruhutamaadalahefeklangsungdarisuatuvariabelindependenterhadapvariabeldependen

  • Pengaruhinteraksiadalahefekbersamaantarsatuataulebihvariabelindependenterhadapvariabeldependen

  • Model regresitidakdapatmeng-cover interaksisedangkan ANOVA bisameng-cover pengaruhinteraksi


: observasi ke (ij)

: rata-rata keseluruhan perlakuan

: pengaruh/efek perlakuan ke-i

: sesatan dengan asumsi NID

Aim :

melakukan uji hipotesis tentang efek perlakuan dan mengestimasinya


Asumsi

  • Sampel diambil secara random dan saling bebas (independen)

  • Populasi berdistribusi berdistribusi Normal

  • Populasi mempunyai kesamaan variansi


Uji Pra Analisis

1. Normalitas

Jikaasumsisesatandipenuhimaka plot normalitasnampaksepertisampel yang berasaldaridistribusi normal yang berpusatke 0 yang ditunjukkandengansebaran data yang cenderungmembentukgarislurus

2. Independensi

Yaitu plot antara residual data dengan , asumsidipenuhijikasebaran data cenderungtidakmembentukpolatentudanacak

3. Homogenitas

Yaitu plot antara residual data denganurutan data, asumsidipenuhijikasebaran data cenderungtidakmembentukpolatentudanacak


Model EfekTetap

Model Efek Random

PerbedaanAsumsi Model Tetapdan Random


Tabel data untukpercobaanfaktortunggal


ProsedurUji Model EfekTetap

i. Asumsi :

ii. Hipotesis:

atau


iii. Pembagian JK

Prosedur ANOVA


Beberapadefinisivariasi.

  • Variasi Total

    Jumlah total kuadratselisih data dengan rata-rata total seluruh data (grand mean)

  • VariasiAntarSampel (atauVariasikarenaPerlakuan)

    Jumlah total kuadratselisih rata-rata tiapsampelthd rata-rata total (grand mean)

TEST ANOVA – MacamVariasi


Beberapa definisi variasi.

3. Variasi Random

Jumlah total kuadrat selisih data dengan rata-rata sampel yg terkait

TEST ANOVA – MacamVariasi


Tabel ANOVA 1 Jalan


Sebagai manager produksi, andainginmelihatmesinpengisiakandilihat rata-rata waktupengisiannya. Diperoleh data sepertidisamping. Padatingkatsignifikansi 0.05 adakahperbedaan rata-rata waktu ?

Mesin1Mesin2Mesin325.40 23.40 20.0026.31 21.80 22.2024.10 23.50 19.7523.74 22.75 20.6025.10 21.60 20.40

Contoh 1


  • Hipotesa :

    H0: 1 = 2 = 3

    H1: Ada rata-rata yang tidak sama

  • Tingkat signifikasi  = 0.05

  • Karena df1= derajat bebas perlakuan = 2 dan df2 = derajat bebas galat = 12, maka f(0.05;2;12) = 3.89.

    Jadi daerah pelokannya:

    • H0 ditolak jika F > 3.89

Penyelesaian


Data


Jumlah Kuadrat Total


JumlahKuadratPerlakuandanJumlahKuadratSesatan


Tabel Anova dan Kesimpulan

Karena Fhitung = 25.60 > 3.89 maka H0 ditolak.

Jadi ada rata-rata yang tidak sama.


Jumlah Kuadrat Total =

Jumlah Kuadrat Perlakuan =

Jumlah Kuadrat Sesatan =

Rumus Hitung Jumlah KuadratUntuk ukuran sampel yang berbeda


TabelAnovaUntukukuransampel yang berbeda


Contoh 2

  • Dalam Sebuah percobaan biologi 4 konsentrasi bahan kimia digunakan untuk merangsang pertumbuhan sejenis tanaman tertentu selama periode waktu tertentu. Data pertumbuhan berikut, dalam sentimeter, dicatat dari tanaman yang hidup.

  • Apakah ada beda pertumbuhan rata-rata yang nyata yang disebabkan oleh keempat konsentrasi bahan kimia tersebut.

  • Gunakan signifikasi 0,05.


  • Hipotesa :

    H0: 1 = 2 = 3= 4

    H1: Ada rata-rata yang tidak sama

  • Tingkat signifikasi  = 0.05

  • Karena df1= derajat bebas perlakuan = 3 dan df2 = derajat bebas galat = 16, maka f(0.05;3;16) = 3.24.

    Jadi daerah pelokannya:

    • H0 ditolak jika F > 3.24

Penyelesaian


Data


Jumlah Kuadrat Total


JumlahKuadratPerlakuandanJumlahKuadratSesatan


Tabel Anova dan Kesimpulan

Karena Fhitung = 21.213 > 3.24 maka H0 ditolak.

Jadi ada rata-rata yang tidak sama.


Latihan 1

Seorang kontraktor di bidang jenis jasa pengangkutan ingin mengetahui apakah terdapat perbedaan yang signifikan pada kapasitas daya angkut 3 merk truk, yaitu Mitsubishi, Toyota dan Honda. Untuk itu kontraktor ini mengambil sampel masing-masing 5 truk pada tiap-tiap merek menghasilkan data seperti disamping.

Jika ketiga populasi data tersebut berdistribusi normal dan variansi ketiganya sama, uji dengan signifikasi 5% apakah terdapat perbedaan pada kwalitas daya angkut ketiga merek truk tersebut


Latihan 2

Seorang guru SMU mengadakan penelitian tentang keunggulan metode mengajar dengan beberapa metode pengajaran. Bila data yang didapat seperti pada tabel disamping, ujilah dengan signifikasi 5% apakah keempat metode mengajar tersebut memiliki hasil yang sama? (asumsikan keempat data berdistribusi Normal dan variasnisnya sama)


  • Login