1 / 11

Struktur der Materie

Struktur der Materie. Aufbau der Natur aus „Ur-Elementen“: Wasser, Luft, Feuer, Erde Leukipp und Demokrit (500-400 v. Chr.): Aufbau aus wenigen „kleinsten, unteilbaren Urteilchen“ (α-θομοs, vgl. „Tomographie“) Durch das ganze Mittelalter hindurch: Bronze (Legierung aus Kupfer und Zink)

coral
Download Presentation

Struktur der Materie

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Struktur der Materie • Aufbau der Natur aus „Ur-Elementen“: Wasser, Luft, Feuer, Erde • Leukipp und Demokrit (500-400 v. Chr.): • Aufbau aus wenigen „kleinsten, unteilbaren Urteilchen“ • (α-θομοs, vgl. „Tomographie“) • Durch das ganze Mittelalter hindurch: • Bronze (Legierung aus Kupfer und Zink) • Eisen aus Erz und Kohle • Quecksilber aus Zinnober (HgS) • Gold aus … ? Lomonossov (1756), Lavoisier (1774): „Gesetz von der Erhaltung der Masse bei chemischer Reaktion“

  2. Struktur der Materie Lavoisier (1774): Zerlegung von Quecksilberoxid (HgO) in seine Bestandteile bei 400 °C. Rückreaktion bei 300 °C. („Traite elementaire de Chimie“: 33 Elemente, von denen aber nur 23 wirkliche Elemente im heutigen Sinn waren) 2

  3. Struktur der Materie Dalton (1808): Element ist der kleinste, aus Atomen, chemisch darstellbare Baustein eines Stoffs (erstes „Periodensystem“ sortiert nach Atommassen) Periodensystem der Elemente (1869 Mendelejew / Mayer): Einteilung in acht Gruppen (senkrechte Spalten nebeneinander, waagerechte Perioden untereinander) Verbindungen von Elementen: • kovalente Bindung (Heitler 1927): gemeinsame Elektronenpaare (Wasserstoffmolekül H2 ) • metallische Bindung (Bloch 1928) • Ionenbindung (polare Bindung, Pauling 1932)

  4. Struktur der Atome Goldstein (1876): Leuchterscheinungen in Glasgefäßen (Gasentladungen) „Kathodenstrahlen“ : Ablenkung durch magnetisches Feld Ablenkung durch elektrisches Feld Unabhängig vom Kathodenmaterial Leuchterscheinung weiter ausgedehnt als mittlere freie Weglänge der Gasteilchen Lennard (1894): Kathodenstrahlen auch außerhalb des Glasgefäßes (Nobelpreis 1905) Röntgen (1895): abgebremsteKathodenstr. erzeugen X-Strahlen (erster Nobelpreis 1901) Thomson und Lennard (1899): Kathodenstrahlen bestehen aus Elektronen (ca. 2000mal leichter als Wasserstoff) 4

  5. Struktur der Atome Becquerel (1896): „Uranstrahlen“ schwärzen eine Photoplatte durch Papier (wie Röntgenstrahlen, 1895) Ehepaar Curie (1898): aus Uranpechblende Polonium und Radium isoliert Wird Radium in einem geschlossenen Gefäß aufbewahrt, so kann man vorher nicht vorhandenes Helium nachweisen. Rutherford (1897): „Uranstrahlen“ zeigen a- und b-Strahlen Villard (1900): Radium zeigt a- und g-Strahlung 5

  6. Ernest Rutherford (1871-1938) Struktur der Atome Rutherford (1903-1913): Beschuß von Metallfolien mit a-Strahlung Beobachtungen:- es wird unter allen Winkeln gestreut- die meisten Teilchen fliegen unabgelenkt durch die Goldfolie- rückgestreute Teilchen haben fast den gleichen Impuls wie beim Einfall „... es war beinahe so unglaublich, als wenn man mit einer 15-Zoll-Granate auf ein Stück Seidenpapier schießt und die Granate zurückkommt und einen selber trifft.“ (E. Rutherford nach seinem Goldfolienexperiment) 6

  7. Struktur der Atome Atommodell nach Rutherford • fast die gesamte Masse der Atome ist in einem Atomkern konzentriert. • Atomkernradius ca. 10-15 m entspricht 1 / 50.000 des Atomradius • („Kirschkern im Eifelturm“) • die Kernladung ist ein ganzzahliges Vielfaches einer • positiven Elementarladung • Anzahl der im Kern enthaltenen Elementarladungen ist die • Kernladungszahl ( = Elektronenzahl, Ordnungszahl im Periodensystem) „Planetensystem“: Elektronen umkreisen den Atomkern 7

  8. Struktur der Atome Schwachstelle des Planetenbahnenmodells: - kreisende Elektronen müssten fortlaufend Energie abstrahlen, somit langsamer werden und binnen kurzer Zeit in den Kern stürzen und dort mit einem Proton verschmelzen - kontinuierliche Energieänderung widerspricht diskreten Linienspektren Atommodell nach Bohr (1913) Überwindung der Schwachstellen durch Forderungen („Postulaten“): 1. Elektronen bewegen sich ohne Strahlungsverlust auf ihren Bahnen 2. Wechsel von Bahnen geht mit portioniertem Energie- übertrag einher (gequantelt) 8

  9. Struktur der Atome Erfolg des Bohr‘schen Atommodells f Die Abfolge der Linien im optischen Spektrum von Wasserstoff war qualitativ und quantitativ erklärt ! E = - Ry / n2 (Ry Rydbergkonstante, n Hauptquantenzahl) 9

  10. Struktur der Atome Quantenmechanik: Elektronen werden als WelleundTeilchen beschrieben werden Einstein (1905): Licht, bisher als Welle, kann auch als Teilchen („Photon“) gesehen werden (einfache Erklärung des photoelektrischen Effekts von Hallwachs 1888). Davisson und Germer (1923-1927): Beugung von Kathodenstrahlen an Kupfer-Einkristall. de Broglie (1924): Elektronen lassen sich sowohl als Teilchen als auch als Wellen beschreiben („Materiewellen“) Heisenberg (1925) und Schrödinger (1926): Quantenmechanik begründet Welle-Teilchen-Dualismus von Materie 10

  11. Struktur der Atome Dirac (1928): Aus der Kombination von Quantenmechanik und Relativitätstheorie folgt die Existenz von „Antimaterie“ Anderson (1932): Entdeckung des Positrons (Elektron mit positiver Elementarladung) Die Bahnen von Elektron und Positron laufen in einer Nebelkammer auseinander: Magnetfeld Bleifolie gleiche Radien gleiche Massen entgegengesetzte entgegengesetzte Krümmungen Ladungen g - Strahlung 11

More Related