APPLICABILITY OF SEQUENCE DIVERSITY AT MITOCHONDRIAL GENES ON DIFFERENT TAXONOMIC LEVELS IN GENETICS...
This presentation is the property of its rightful owner.
Sponsored Links
1 / 61

Yuri Ph. Kartavtsev A.V. Zhirmunsky Institute of Marine Biology, Vladivostok 690041, Russia ; PowerPoint PPT Presentation


  • 56 Views
  • Uploaded on
  • Presentation posted in: General

APPLICABILITY OF SEQUENCE DIVERSITY AT MITOCHONDRIAL GENES ON DIFFERENT TAXONOMIC LEVELS IN GENETICS OF SPECIATION, PHYLOGENETICS AND BARCODING. Yuri Ph. Kartavtsev A.V. Zhirmunsky Institute of Marine Biology, Vladivostok 690041, Russia ; e - mail : yuri.kartavtsev 48@ hotmail . com.

Download Presentation

Yuri Ph. Kartavtsev A.V. Zhirmunsky Institute of Marine Biology, Vladivostok 690041, Russia ;

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Yuri ph kartavtsev a v zhirmunsky institute of marine biology vladivostok 690041 russia

APPLICABILITY OF SEQUENCE DIVERSITY AT MITOCHONDRIAL GENES ON DIFFERENT TAXONOMIC LEVELS IN GENETICS OF SPECIATION, PHYLOGENETICS AND BARCODING

Yuri Ph. Kartavtsev

A.V. Zhirmunsky Institute of Marine Biology, Vladivostok 690041, Russia;

e-mail: [email protected]


Yuri ph kartavtsev a v zhirmunsky institute of marine biology vladivostok 690041 russia

Teacher: Academician, prof. Yuri P. Altukhov, 1992-2006 director,

N.Vavilov Institute of General Genetics, Moscow (Russia)


Main goals

MAIN GOALS

  • CBOL & Fish-BOL

  • SPECIES IDENTIFICATION

  • SPECIES DEFINITIONAND SPECIES ORIGIN:PROBLEMS, RESTRICTIONS. GENETIC VIEW.


1 cbol fish bol

1. CBOL & Fish-BOL


The international cbol project

THE INTERNATIONAL CBOL PROJECT

  • The CBOL is main global initiative. The Fish-BOL, its part, has over 5400 species barcoded by Co-1 from more than 30,000 specimens what makes it unique. P. Hebert and B. Hanner are preparing a $150M grant application for Genome Canada only for 2008. Othernations’ funds in CBOL are also big in some countries and unions: USA, EU.

  • B. Hanner suggests a recent Fish-BOL paper on Canadian freshwater fishes for your interest, as well as a new paper in press that demonstrates barcoding can identify cases of market substitution in North American seafood. These might be relevant for our meeting and ensuing discussions!

  • In this year there will be held third world-wide internationalconference (Sept. 2008 Chindao, Peoples Republic of China) and many regional meeting like us were performed.


The international fish bol project

THE INTERNATIONAL FISH-BOL PROJECT

Cochairmen: P. Hebert &B. Ward


Fish bol current state 2006 vs 2008

Fish-BOL CURRENT STATE (2006 vs 2008)


Registration and barcoding utilities bold w w w boldsystems org 1

Registration and Barcoding Utilities(BolD; www.boldsystems.org) (1)


Registration and barcoding utilities bold w w w boldsystems org 2

Registration and Barcoding Utilities(BolD; www.boldsystems.org) (2)


Registration and barcoding utilities bold w w w boldsystems org 3

Registration and Barcoding Utilities(BolD; www.boldsystems.org) (3)


Yuri ph kartavtsev a v zhirmunsky institute of marine biology vladivostok 690041 russia

Chair:Masaki Miya

Vice Chair:Shunping He

Members:

Nina Bogutskaya

Seinen Chow

Shunping He

Yuri Kartavtsev

Keiichi Matsuura

Masaki Miya

Mutsumi Nishida

Ekaterina Vasilieva

North East Asian Regional Working Group


Fish bol russia development

FISH-BOL. RUSSIA DEVELOPMENT


2 species identification

2. SPECIES IDENTIFICATION


Some objects

Some Objects

A

B

Fig. 1.Halibut-like flatfish,Hypoglossus elasodon(A) andobscure flatfish, Pseudopleuronectes obcurus (В).


Introduction

INTRODUCTION

  • Mitochondrion DNA (mtDNA) is a ring moleculeof 16-18 kilo-base pairs (kbp) in length. As literature data show, mtDNA of all fisheshas similar organization (Lee et al., 2001; Kim et al., 2004; Kim et al., 2005; Nagase et al., 2005; Nohara et al., 2005) andsmall differencesamong all vertebrate animals, including men (Anderson et al., 1981; Bibb et al., 1981; Wallace, 1992; Kogelnik et al., 2005).

  • The complete content of whole mitochondrial genome (mitogenome) includes: control region (CRorD loop), where the siteof initiation of replication and promoters are located, big (16S) and small (12S) rRNA subunits, 22 tRNAand 13polypeptide genes.

  • Usually in phylogenetic research single gene sequences are usedfor both mtDNA and nuclear genome. However, recently more and more frequent are become complete mitogenome usage. Japanese scientists are leading here for water realm organisms.

  • Most popular in phylogenetics are sequences ofcytochrome b(Cyt-b) and cytochromeoxidase 1 (Cо-1) genes, which used for taxa comparison at the species - familylevel (Johns, Avise, 1998; Hebert et al., 2004; Kartavtsev, Lee, 2006). Many sequences that bringing the phylogenetic signal obtainedfor different taxaat gene 16S rRNA as well.

  • Sequences ofseparate genes can dive different phylogeneticsignal because of differences in substitution rates. This is also true for different sections of genes.Also, under comparison of higher taxa there may be effects of homoplasy. When numerous taxa available there are problemsof insufficient information capacity of sequences to cover big species diversity and representative taxa representation is quite important (Hilish et al., 1996). Nevertheless, for the species identification, excluding rare cases, fine results are availableeven with the usage of short sequences, like Со-1,with 650bp.


Yuri ph kartavtsev a v zhirmunsky institute of marine biology vladivostok 690041 russia

Applicability of Different DNA Typesin Phylogenetics and Taxonomy

Spacers

[ITS-1, 2]

mtDNA

nDNA,

rDNA

SpeciesGenusFamilyOrderClassPhylum

Most substantiated statistically results

Statistically significant results


Material and methods

MATERIAL AND METHODS


Aligned flatfish sequences at 1 our and genbank data

Aligned flatfish sequences atСо-1:our and GenBankdata


Distance data

Distance Data


P distances in groups of comparison catfish

p-DISTANCES IN GROUPS OF COMPARISON,Catfish

Fig. 1.Resulting graph of mean p-distance values at four levels of differentiation in the catfish species (Siluriformes) for Cyt-b gene. Groups: 1. Intraspecies, among individuals of the same species; 2. Intragenus, among species of the same genera; 3. Intrafamily, among genera of the same family; 4. Intraorder, families of the order Pleuronectiformes. There are statistically significant variation. SE: a standard error of mean; F = 124.74, d.f. = 3; 29, p < 0.0001 (Kartavtsev et al., 2007a, Gene).


Yuri ph kartavtsev a v zhirmunsky institute of marine biology vladivostok 690041 russia

p-DISTANCES IN GROUPS OF COMPARISON,flatfish

Fig. 2. Resulting graph of one factor ANOVA and mean p-distance values at four levels of differentiation in the flatfish species (Pleuronectiformes) for Cyt-b gene. Groups: 1. Intraspecies, among individuals of the same species; 2. Intragenus, among species of the same genera; 3. Intrafamily, among genera of the same family; 4. Intraorder, families of the order Pleuronectiformes. Statistically significant variation are shown on top of the graph. SE: a standard error of mean (Kartavtsev et al., 2007b, Marine Biol.).


P distances in groups of comparison turtles

p-DISTANCES IN GROUPS OF COMPARISON,turtles

Fig. 3.Resulting graph of ANOVA and mean p-distance values at four levels of differentiation in turtle species (Testudines) for Cyt-b gene. Groups: 1. Intraspecies, among individuals of the same species; 2. Intragenus, among species of the same genera; 3. Intrafamily, among genera of the same family; 4. Intraorder, families of the same order. Variation among four groups is statistically significant: F = 61.87, d.f. = 3; 152, p < 0.000001 (Jungetal., 2006).

р-Distances: (1) 2.33±0.03%, (2) 3.34±0.48%, (3) 6.41±0.11% и (4) 11.92±0.37% (Mean ± SE).


Yuri ph kartavtsev a v zhirmunsky institute of marine biology vladivostok 690041 russia

p-DISTANCES IN GROUPS OF COMPARISON,Perciformes

Fig. 3. Resulting graph of one factor ANOVA and mean p-distance values at four levels of differentiation in fish species (Perciformes) for Co-1 gene sequence data. Comparison groups: 1. Intraspecies, among individuals of the same species; 2. Intragenus, among species of the same genera; 3. Intrafamily, among genera of the same family; 4. Intraorder, families of the order Perciformes. Variation is statistically significant. Bars are confidence intervals for mean (95%).


P distances in groups of comparison review

p-DISTANCES IN GROUPS OF COMPARISON,Review

Fig. 4.Categorized plot of distribution of weighted mean p-distances among four groups of comparison at Cyt-bandCo-1genes. Groups here: 1. Intra-species, among individuals of the same species; 2. Intra-sibling species, 3. Intra-genus, among species of the same genera; 4. Intra-family, among genera of the same family (Kartavtsev, Lee, 2006).


Genetic similarity in taxa of different rank mean for the groups

GENETIC SIMILARITY IN TAXA OF DIFFERENT RANK: MEAN FOR THE GROUPS

Fig. 5. Genetic similarity in taxa of different rank based on protein markers: mean for the groups. 1.Subspecies, 2.Semispecies and sibling species, 3.Species, 4.Genera.

Intraspecies genetic distances were measured for many groups of organisms (Lewontin, 1974, Nei, 1987, Altukhov, 1989). Mean genetic similarity on this level is near I = 0.95 (see details in Kartavtsev, 2005). mtDNA data were presented above. Thus, data available suggest that in general a phyletic evolution prevail in animal world, and so far, the Geographic speciation events (Type 1a) prevail in nature.

Do data presented assume that speciation is alwaysfollows the Type 1a mode? I guess, no. Few examples below let to support this answer.


Distance vs taxa splitting

DISTANCE VS TAXA SPLITTING

  • Has punctuation an impact in species origin on molecular level?

  • Avise, Ayala, 1976; Kartavtsev et al., 1980; current – No.

  • Pegel et al., 2006 – Yes.

rs = 0.22, p < 0.05

Number of Splittings

Transformed p-distance

Fig. 6. Plot of p-distance on number of splittings at Cyt-b sequence data for catfishes and flatfishes.


Genetic distances among species in separate animal genera after avise aquadro 1982

GENETIC DISTANCES AMONG SPECIES IN SEPARATE ANIMAL GENERA(After Avise, Aquadro, 1982)

This plot illustrate a thought that different animal groups of the same rank are unequal in structural gene divergence; i.e. the rate of evolution differ either at genes or at morphology or both.


Genetic distatnces in taxa of salmon fishes

GENETIC DISTATNCES IN TAXA OF SALMON FISHES

D

1 – Populations within species, 2 – Subspecies, 3 - Species

This plot support a thought that in salmon even a very small structural gene change can create separate biological species.


Examples of regulatory divergence in fish taxa

EXAMPLES OF REGULATORY DIVERGENCE IN FISH TAXA

Comparison of chars

Table 2.1. COMPARISON OF ISOZYME ACTIVITY IN THREE WHITEFISH

FORMS (COREGONIDAE) AND GRAYLING (THYMALLIDAE)

LEVELS OF DIFFERENCES IN ACTIVITY

LOCUS/

FORM

Ratio, %

Note. Total number of loci analyzed are: Whitefish – 22, Grayling – 23, “-” – Activity do not differ

significantly, “+” Iterative activity difference, “++” – two-fold difference, “+++” – three-fold or greater difference


What is main outcome

WHAT IS MAIN OUTCOME

  • Distance measure alone is not satisfactory descriptor.

  • Data on intraspecies diversity (heterozygosity) at structural genes are necessary.

  • Measures of regulatory genome changes should be necessary to describe transformative modes of speciation.

  • Other descriptors of genomic change are required (e.g. chromoseme number, NF, etc.).


3 species definition and species origin problems restrictions genetic view

3. SPECIES DEFINITIONAND SPECIES ORIGIN:PROBLEMS, RESTRICTIONS.GENETIC VIEW


What species is

WHAT SPECIES IS?

Species is a biological unity which reproductively isolated from other unities and consisting from one to several more or less stable populations of sexually reproducing individuals that occupy certain area in nature (my definition). In principal points, this is the definition of BSC (Biological Species Concept). In one of the original BSC definitions “A species is a reproductive community of populations (reproductively isolated from others) that occupies a specific niche in nature” (Mayr, 1982, p. 273). We will accept BSC for further discussion, although will keep in mind that it is restricted mainly to bisexual organisms (Mayr, 1963, Timofeev-Resovsky et al., 1977, Templeton, 1998).

  • The Linnaean Species

  • The Biological Species Concept (BSC) (Mayr, 1942, 1963)

  • BSC Modification II (Mayr, 1982)

  • The Recognition Species Concept (Paterson, 1978, 1985)

  • The Cohesion Species Concept (Templeton, 1989)

  • Evolutionary Species Concept

  • Simpson (1961) Evolutionary Species Concept.

  • Wiley’s (1978) Evolutionary Species Concept.

  • The Ecological Species Concept (Van Vallen, 1976).

  • The Phylogenetic Species Concept (Crawcraft, 1983).


General genetic approach advances and limitations

GENERAL GENETIC APPROACH: ADVANCES AND LIMITATIONS

  • The problem of biological species, and speciation are main focus of this report. These problems took researcher’s attention since establishing the biology as a science. Most popular now among biologist is the Synthetic Theory of Evolution (STE), which part is comprised by the Biological Species Concept (BSC). Origin and systematic description of STE concept was presented in fundamental books by Haldane (1932), Dobzhansky (1937, 1943, 1951), Huxley (1954), Mayr and co-workers (Mayr, 1942, Mayr, 1963). A popular in Russia summary of STE became a book by Timofeev-Resovsky with co-authors (1977). Good, constructive ideas in STE support were developed by Vorontsov (1980).

  • One of weak point in STE is absence as a rule a possibility to prove experimentally one of key criteria of BSC – i.e., reproductive isolation of the species in nature. There are a lot of other criticisms that were summarized for example by King (1993). Nowadays, the new controversy between BSC and Phylogenetic Species Concept arise (Avise, Wollenberg, 1997). The theory of speciation is also not well developed in STE. Exactly speaking, in a quantitative meaning there is no theory as real matter at all.

  • In should be outlined, nevertheless, that many directions of STE and genetics of speciation are developing. Thus, a diverse analysis performed to understand a genetic sense and conceptual basements of speciation (Fox, Morrow, 1981, Grant, 1984, King, 1992). The genetic basis for creation of a reproductive isolationwas subjected to the analysis too (Leslie, 1982, Templeton, 1981, Nei et al., 1983, Coyne, 1992). As well there were considered: a possibility of a sympatric speciation (Bush, 1975, Genermon, 1991), the role of saltations or revolutions in evolution (Altukhov, Rychkov, 1970, Carson, 1974, Altukhov, 1985, 1997) and the genetic differentiation during formation of living forms and taxa (Avise, 1975, Avise, Aquadro, 1982, Nevo, Cleve, 1978, Thorpe, 1982, Nei, 1975, 1987).What in general are the advances and limitations in contemporary genetic approach?


Advances

ADVANCES

  • 1. Data reduction up to genotypic codes (values) give us a possibility to use genetic theory in the analysis.

  • 2. It is possible to perform a comparative investigation of a variability among structural and regulatory elements of the genome and genetic divergence of taxa.

  • 3. Investigations on protein and nucleotide divergence of species from nature discovered a “Molecular clock”.

  • 4. A possibility of phylogenetic reconstruction occurred: 1) not by similarity, but by kinship and 2) by in time dating of a divergence.


Limitations

LIMITATIONS

  • 1. Deduction is limited by genotypic descriptions and genetic theory.

  • 2. Analysis is connected with preliminary laborious experimental investigation (with its own limitations).

  • 3. Investigation of a species from nature is frequently limited by originality or rare repetition of an event (phenomenon).

  • 4. Genotypic effects of the marker loci on phenotype are weak.

  • 5. The theory is not sufficiently developed in some directions.


What data are necessary

WHAT DATA ARE NECESSARY?

  • Data that support (reject) central dogma of Neodarwinism – Evolution can occurred the only on the base of genetic change.

  • Data on variability at different levels of biological organization in genetic terms (by loci quantitative genotypic values – AA, …) – single-dimensioned data tables (DT).

  • Data on genotypic values of an individual at the set of loci (genotype – AA Bb…) or whole gene sequence set – multi-dimensionalDT.

  • Complementary data: Morphology traits, data on abiotic variability etc. (at least as an expert estimate – grouping variables).


Schematic representation of species divergence and origin from dobzhansky 1955

SCHEMATIC REPRESENTATION OF SPECIES DIVERGENCE AND ORIGIN(FromDobzhansky, 1955)

Fig. 3.1.Dobzhansky’s (1955) scheme of in time divergence.

А – Single species population.

B – Initial phase of divergence (subspecies).

C – Different species.

C

The keystone of STE (Synthetic Theory of Evolution) may be represented by Dobzhansky’s scheme (Fig. 3.1), in which the gene pool separation is a key to speciation. If one provides a fact that evolution is possible without genetic change in lineages, then the evolutionary genetic paradigm and STE in particular can be rejected.

B

A


Fig 3 1 main modes of speciation bush 1975

FIG. 3.2. DIAGRAMMATIC REPRESENTATION OF BASIC MODES OF SPECIATION(From Bush, 1975)

Fig. 3.1. Main Modes of SpeciationBush, 1975)

The gene flow breaks are able to create Reproductive Isolating Barriers (RIB) or Reproductive Isolation Mechanisms (RIM), which in their turn lead to further origin of species; under different situation in nature, the different modes of speciation acted (Fig. 3.2). Neither, the scheme above, nor the paper itself (Bush, 1975), answer many fundamental questions of speciation. For instance, it is unclear, what mode is most frequent and is a gene flow the sole primary factor, that alter gene pools or there are others?

In other words we have to conclude that there is no a theory of speciation in scientific

meaning at all.


Speciation modes sm population genetic view

SPECIATION MODES (SM): POPULATION GENETIC VIEW

  • ABSENCE OF QUANTITATIVE THEORY OF SPECIATION (QTS)

  • We have mentioned in preceding section that the speciation theory in evolutionary genetics is absent in exact scientific meaning, which expects the ability to predict future by the theory. In this case this is to predict species origin, or at least discriminate among several speciation modes on the basis of some quantitative parameters or their empirical estimates. Attempts made in this direction (Avise, Wollenberg, 1997, Templeton, 1998) do not fit the above criteria. That is why we attempted to step in the discrimination of the speciation modes on the basis of main population genetic measurements available in literature, and that may be laid in the frame of a genetic speciation concept.

  • BASEMENT FOR THE QTS

  • As a basis for the set of evolutionary genetic concepts we used the descriptions made by Templeton (1981). As a result the classification scheme for 7 different modes of speciation was created (Fig. 3.3). This approach leads to quite simple experimental scheme that permits: (i) to arrange further investigation of speciation in different groups of organisms, and (ii) to derive analytical relations for each speciation mode (Fig. 3.4). The approach is based on a set theory but it is aknowledge-based approach.I believe, this approach is best for such complicated matter.


Fig 3 3 speciation modes sm population genetic view kartavtsev et al 2002

Fig. 3.3.SPECIATION MODES (SM): POPULATION GENETIC VIEW(Kartavtsev et al, 2002)

DIVERGENCE SM

D1. ADAPTIVE

D2. CLINAL

D3. HABITAT

DESCRIPTORS:

D – Genetic distance at structural

genes:

DT – in suggested parent taxa,

DS – among conspecific demes,

DD – among subspecies or sibling

species;

HD – Mean heterozygosity in suggested

daughter population;

Hp – Mean heterozygosity in suggested

parent population;

EP – Divergence in regulatory genes

among suggested parent taxa;

ED – Divergence in regulatory genes

among suggested daughter taxa;

TM+- Test for modification (positive);

TM-- Test for modification (negative).

RIB – Reproductive isolation Barriers.

Necessary Conditions for Speciation

D1. a) Erection of extrinsic

Isolating barriers followed by

gene flow break; b) Pleotropic

origin of RIB (Reproductive

Isolatiion Barriers) in long time

D2. a) Selection on a cline

with isolation by distance;

b) Pleotropic

origin of RIB

D3. a) Selection over multiple

habitats with no isolation by

distance; b) RIB origin by

disruptive selection at genes

determined behavior

Sufficient Conditions for Speciation

Lack of efficient hybridi-

zation in the zone

of contact

Lack of efficient hybridi-

zation outside the zone

of contact

Lack of efficient hybridi-

zation inside and outside the

zone of contact

1. DT > DS1 (S)

2. ED = EP

3. HD = HP

4. TM-

1. DT > DS2 (S)

2. ED EP

3. HD = HP

4. TM-

1. DT = DS3 (S)

2. ED EP

3. HD =< HP

4. TM-

Experimentally measurable features and possible descriptors for the model (theory),  (S)


Fig 3 4 analitical description of seven types of speciation modes

1 (S)  {(DT > DS)  (ED = EP)  (HD = HP)  TM-}

(D1)

2 (S)  {(DT = DS)  (ED  EP)  (HD = HP)  TM-}

(D2)

3 (S)  {(DT = DS)  (ED  EP)  (HD <= HP)  TM+}

(D3)

4 (S)  {(DT > DD)  (ED  EP)  (HD < HP)  TM-}

(T1)

5 (S)  {(DT = DD)  (ED = EP)  (HD < HP)  TM-}

(T2)

6 (S)  {(DT > DD)  (ED  EP)  (HD > HP)  TM-}

(T3)

7 (S)  {(DT > DS)  (ED  EP)  (HD < HP)  TM-}

(T4)

Fig. 3.4. ANALITICAL DESCRIPTION OF SEVEN TYPES OF SPECIATION MODES

Note. Descriptors are explained in previous figure.


The qts empirical proving

THE QTSEMPIRICAL PROVING

  • Salmon (Kartavtsev, Mamontov, 1983, Kartavtsev et al., 1983),

  • Cypriniformes (Kartavtsevetal., 2002),

  • Turtles, flatfishes,catfishes (Jung et al., 2006, Kartavtsev et al., 2006, 2007).


Phylogenetics barcoding

PHYLOGENETICS & BARCODING


Species identification and phylogenetics

SPECIES IDENTIFICATION AND PHYLOGENETICS

Phylogenetics

+ Taxonomy

Identification

+ Taxonomy


Yuri ph kartavtsev a v zhirmunsky institute of marine biology vladivostok 690041 russia

Fig. 3.5. Rooted consensus (50%) trees (A-B) showing phylogenetic interrelationships on the basis of Cyt-b sequence data for the analyzed flatfish species (Pleuronectiformes) and four out-group taxa. A – tree based on NJ clustering technique with bootstrap support shown in the nodes (n=1000), B – Bayesian tree; repetition frequencies for n=106 simulated generations are shown (%) in the nodes. The tree was built based on the TrN+I+G model and was rooted with the sequences of four out-group species: three are Perciformes and one is Cypriniformes. The scales in the left bottom corners indicate relative branch lengths.


Yuri ph kartavtsev a v zhirmunsky institute of marine biology vladivostok 690041 russia

Fig. 3.6. Consensus (50%) tree showing phylogenetic interrelationships on the basis of Co-1 sequence data for the analyzed flatfish species (Pleuronectiformes) and two outgroup taxa. Rooted Bayesian tree; repetition frequencies (probabilities) for n=106 simulated generations are shown in the nodes (%).The tree was built based on the TVM+I+G model and rooted with the sequences of two outgroup species, Perciformes. The scale in the left bottom corners indicate the relative branch lengths.


Yuri ph kartavtsev a v zhirmunsky institute of marine biology vladivostok 690041 russia

Fig. 3.7.Rooted consensus (50%) tree showing phylogenetic interrelationships on the basis of Cyt-b sequence data for the analyzed flatfish species (Pleuronectiformes) and three outgroup taxa. Bayesian tree; repetition frequencies for n=106 simulated generations are shown (%) in the nodes. The trees were built based on the TrN+I+G model, and rooted with the sequences of outgroup species – Perciformes. The scales in the left bottom corners indicate the relative branch lengths.(Kartavtsev et al., 2007, Marine Biol.).


Yuri ph kartavtsev a v zhirmunsky institute of marine biology vladivostok 690041 russia

Fig. 3.8. Consensus (50%) trees showing phylogenetic interrelationships on the basis of Co-1 sequence data for 7 analyzed perch-like fish species (Perciformes) and two outgroup sequences. Rooted Bayesian tree was build for sample purposes; posterior probabilities for n=106 simulated generations are shown in the nodes (%). The tree was built based on the HKY+G model. Two other numbers in the nodes show tree bootstrap support based on similar clustering for NJ and ML techniques; support scores are given in the order NJ/ML/BA. Outgroup are two sequences of a representative of Cypriniformes. The scale in the left bottom corner indicate the relative branch lengths.


Conclusions

Conclusions

  • Speciation mode must be specified with a set of descriptors not exclusively by distances

  • Both Co-1 and Cyt-b are generally good barcoding tools for species identification

  • For phylogenetic reconstructions we need to cover both taxa diversity and several genes’ sequence diversity


Thanks for attention

THANKS FOR ATTENTION!

СПАСИБО ЗА ВНИМАНИЕ!


Few recent publications

FEW RECENT PUBLICATIONS

  • Kartavtsev YP. 2005. Molecular evolution and population genetics. Far Eastern State Univ. Press., Vladivostok, 234 p.

  • Kartavtsev YP, Lee J-S. Analysis of nucleotide diversity at genes Cyt-b and Co-1 on population, species, and genera levels. Applicability of DNA and allozyme data in the genetics of speciation. Genetika, 2006. 42: 437-461.

  • Jung S-O, Lee Y-M, Kartavtsev YP, Park I-S, Kim D-S, Lee J-S. The complete mitochondrial genome of the Korean soft-shelled turtle Pelodiscus sinensis // DNA Sequence, 2006. 17(6): 471-483.

  • Sasaki T, Kartavtsev YP, Uematsu T, Sviridov VV, Hanzawa N. Phylogenetic independence of Far Eastern Leuciscinae (Pisces: Cyprinidae) inferred from mitochondrial DNA analysis. Gene and Genetic Systems, 2007. 82: 329-340.

  • Kartavtsev YP, Lee Y-M, Jung S-O, Byeon H-K, Son Y-, Lee J-S. Complete mitochondrial genome in the bullhead torrent catfish, Liobagrus obesus (Siluriformes, Amblycipididae) and phylogenetic considerations. Gene, 2007a. 396: 13-27.

  • Kartavtsev YP, Park T-J, Vinnikov KA, Ivankov VN, Sharina SN, Lee J-S. Cytochrome b (Cyt-b) gene sequences analysis in six flatfish species (Pisces, Pleuronectidae) with phylogenetic and taxonomic insights. Journal Marine Biology, 2007b. 152(4): 757-773.


Yuri ph kartavtsev a v zhirmunsky institute of marine biology vladivostok 690041 russia

Ingroups:

Sister group

Sister group

Branches

Nodes,

Speciation events

Internal nodes

Root

TERMS

Terminal taxa:A B C D E F G HOutgroup:


Yuri ph kartavtsev a v zhirmunsky institute of marine biology vladivostok 690041 russia

Дихотомия и полихотомия

Политомия или мультифуркации

Бифуркация

A

A

A

B

C

E

E

C

C

B

D

B

E

D

D

Неразрешенная

или звездчатая

топология

Частично

Неразрешенная

топология

Полностью

Разрешенное

Бифуркационное

древо


Yuri ph kartavtsev a v zhirmunsky institute of marine biology vladivostok 690041 russia

Неукорененное древо

Отсутствует возможностьговорить о направленности или о предках на основе такого дерева.

Шимпанзе

Капуста

Мартышка

Муха

Рис


Yuri ph kartavtsev a v zhirmunsky institute of marine biology vladivostok 690041 russia

Укорененное древо

Шимпанзе

Мартышка

Шимпанзе

Муха

Рис

Капуста

Капуста

Муха

Если укоренить

здесь

Рис

Корень

  • По укорененному древу можно говорить об отношениях

    предок - потомок.

  • Точная оценка общего гипотетического предка зависит

    От места, куда установлен корень.

Мартышка


Yuri ph kartavtsev a v zhirmunsky institute of marine biology vladivostok 690041 russia

ВидB

ВидC

Вид A

c

a

b

Вид A

a

Вид B

b

Вид C

Видовое древо

c

Генное древо

Различие между видовым древом

и генным древом: дупликация гена


Yuri ph kartavtsev a v zhirmunsky institute of marine biology vladivostok 690041 russia

Вскоре после видообразо- вания сестринские таксоны с высокой вероятностью будут обнаруживать поли-филетический статус генного древа

После 4N поколений сес- тринские таксоны окажутся с высокой вероятностью реципрокно монофилетич- ными

Репродуктивная изоляция


Yuri ph kartavtsev a v zhirmunsky institute of marine biology vladivostok 690041 russia

СПИСОК ГЕНЕТИКОВ

Москва

1. ЗахаровИ.А. (ИОГен, чл-корр. РАН, зав. лабораторией, советник РАН)

2. ПолитовД.В. (ИОГен, к.б.н., зав. лабораторией)

3. ГордееваН.В. (ИОГен, к.б.н.)

4. АфанасьевК.И. (ИОГен, к.б.н.)

5. Васильев В.П.(ИПЭЭ, д.б.н.)

6.РысковА.П. (ИБГ, чл-корр. РАН, зав. лабораторией)

6. Семенова С.А. (ИБГ, к.б.н.)

7. Барминцев A.A. (ВНИРО, к.б.н.)

Владивосток

1. КартавцевЮ.Ф. (ИБМ, д.б.н.)

2. Кухлевский А.Д. (ИБМ, к.б.н.)

3. Шарина С.Н. (ИБМ, аспирант)

4. Шедько С.В. (БПИ, к.б.н., зав. группой)

5. ЧичвархинА.Ю. (БПИ, к.б.н.)

6. БалакиревЕ.С. (ДВГУ, д.б.н., зав. лабораторией)

7. Винников К.А. (ДВГУ, аспирант)

8. Чичвархина O.В. (ИБМ, аспирант)


Yuri ph kartavtsev a v zhirmunsky institute of marine biology vladivostok 690041 russia

СПИСОК УЧАСТВУЮЩИХ ИХТИОЛОГОВ ДВ

  • ИБМ(4)

  • ПитрукД.Л. (к.б.н.., директор музея, зам. директора)

  • ЯковлевЮ.М. (к.б.н.)

  • СоколовскийА.С. (к.б.н.)

  • БалановА.А. (к.б.н., зав. лабораторией)

  • Долганов В.М. (д.б.н.)

  • ДВГУ(4)

  • ИванковВ.Н. (д.б.н.)

  • ПлатошинаЛ.К. (к.б.н.)

  • ВинниковК.А. (аспирант)

  • РутенкоО.А. (аспирант)

  • ИБПС(3)

  • ЧерешневИ.А. (член-корр. РАН, директор)

  • ШестаковА.В. (к.б.н.)

  • ГрунинС.И. (аспирант)

  • ТИНРО-центр, СахНИРО, КамчатНИРО и др. (7)

  • ШунтовВ.П. (д.б.н., зав. лабораторией)

  • БорисовецЕ.Н. (к.б.н., зав. лабораторией)

  • СвиридовВ.В. (к.б.н.)

  • ПушниковаГ.М. (к.б.н.)

  • КарпенкоВ.В. (к.б.н., зав. лабораторией)

  • ЗолотухинС.Ф. (к.б.н., зав. лабораторией)

  • Рыбникова И.Г. (к.б.н.)


Genbank ncbi

Подписка последовательностей в GenBank (NCBI)


Yuri ph kartavtsev a v zhirmunsky institute of marine biology vladivostok 690041 russia

ВВЕДЕНИЕ

  • ДНК митохондрий (мтДНК) – это кольцевая молекула, длиной около 16-18 тысяч пар нуклеотидов (тпн.). Как показывают литературные данные, мтДНК всех рыб имеет сходную организацию (Lee et al., 2001; Kim et al., 2004; Kim et al., 2005; Nagase et al., 2005; Nohara et al., 2005) и мало, чем отличается и у других позвоночных животных, включая человека (Anderson et al., 1981; Bibb et al., 1981; Wallace, 1992; Kogelnik et al., 2005).

    Полный состав митоходриального генома

    (митогенома) включает: контрольный регион

    (CR или D петля),

    где сосредоточены сайт начала репликации и

    промоторы, большая (16S) и малая (12S)

    субъединицы рРНК, 22 тРНК и

    13 полипептидных генов.

  • Филогенетические исследования обычно используют последовательности единичных генов, в том числе и генов ядерной ДНК, хотя в последние годы все чаше используют для этих целей и полный митогеном. Наиболее популярны в филогенетике последовательности генов цитохрома b(Cyt-b) и цитохром оксидазы 1 (Cо-1), которые используются для сравнения таксонов на уровне вид – семейство (Johns, Avise, 1998; Hebert et al., 2004; Картавцев, Ли, 2006). Много последовательностей, несущих филогенетический сигнал, получено для разных групп также по гену 16S рРНК.

  • Последовательности отдельных генов могут давать различный филогенетический сигнал из-за различных темпов замен и конкретной эволюционной и/или демографической судьбы таксона (дифференцированная сортировка филетических линий). Это относится и к разным участкам одного и того же гена. Кроме того, при сопоставлении многочисленных таксонов, особенно высокого ранга, возникают проблемы с эффектами гомоплазии и недостаточной информационной емкостью наборов последовательностей для филогенетических целей (Hilish et al., 1996, Miya et al., 2001). Тем не менее, для идентификации видов, за редкими исключениями, достаточно сравнение даже относительно коротких последовательностей, например гена цитохром оксидазы 1 (Со-1, 654 пн).


  • Login