1 / 23

Status of the ANTARES Neutrino Telescope

research goals detector setup selected results summary. Stéphanie ESCOFFIER CPPM Marseille, France on behalf of the ANTARES Collaboration. Status of the ANTARES Neutrino Telescope. Neutrino astronomy. Cosmic sources of neutrinos micro quasars: X-ray binaries

bert-monroe
Download Presentation

Status of the ANTARES Neutrino Telescope

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. research goals • detector setup • selected results • summary Stéphanie ESCOFFIER CPPM Marseille, France on behalf of the ANTARES Collaboration Status of the ANTARES Neutrino Telescope

  2. Neutrino astronomy • Cosmic sources of neutrinos • micro quasars: X-ray binaries • supernova remnants and shock acceleration • Active Galactic Nuclei • Gamma Ray Bursts • Intriguing science questions: • astrophysical acceleration mechanism ? • origin of cosmic rays ? • dark matter ? • other exotic physics (magnetic monopoles) ?

  3. 7 COUNTRIES 28 INSTITUTES ~ 150 SCIENTISTS AND ENGINEERS The ANTARES Collaboration • University of Erlangen • Bamberg Observatory • University/INFN of Bari • University/INFN of Bologna • University/INFN of Catania • LNS – Catania • University/INFN of Pisa • University/INFN of Rome • University/INFN of Genova • NIKHEF (Amsterdam) • KVI (Groningen) • NIOZ Texel • ITEP, Moscow • Moscow State Univ • CPPM, Marseille • DSM/IRFU/CEA, Saclay • APC, Paris • LPC, Clermont-Ferrand • IPHC (IReS), Strasbourg • Univ. de H.-A., Mulhouse • IFREMER, Toulon/Brest • C.O.M. Marseille • LAM, Marseille • GeoAzur Villefranche IFIC, Valencia UPV, Valencia UPC, Barcelona ISS, Bucarest

  4. 14.5 m ~60 m The ANTARES detector Buoy • 12 lines of 75 PMTs • 25 storeys / line • 3 PMTs / storey • ~900 PMTs Storey 350 m 40 km to shore Junction Box Submarine links Completed in May 2008

  5. The background • (Particle) Physics background • cosmic rays (atmospheric μ and ν) PMT counting rates • Optical background • constant 40K (~40 kHz) Cherenkov light • bioluminescence of micro-organisms e- • bursts from macro-organisms 40K beta decay 2 min 40Ca 40K is used to check the time calibration of the detector

  6. The background • (Particle) Physics background • cosmic rays (atmospheric μ and ν) PMT counting rates • Optical background • constant 40K (~40 kHz) • bioluminescence of micro-organisms • bursts from macro-organisms 2 min strongly correlated to sea currents

  7. The background • (Particle) Physics background • cosmic rays (atmospheric μ and ν) PMT counting rates • Optical background • constant 40K (~40 kHz) • bioluminescence of micro-organisms • bursts from macro-organisms 2 min special event in 2006: ANTARES Coll., Deep-Sea Res. I 58 (2011) 875.

  8. The online/precise tracking • Online tracking • fast, to discriminate atmospheric muons • from neutrinos • No detailed calibration/ no real time detector • positioning needed • Angular resolution: Δθ 3o Astropart.Phys. 34 (2011) 652 • The precise tracking • detailed real-time positioning of the detector • detailed PMTs charge/time calibration • detailed systematic knowledge of the apparatus • (OMs angular acceptance, etc.) • Angular resolution: up to Δθ0.2o arXiv 0908.0816

  9. Event display: a neutrino candidate online tracking height Example of a reconstructed up-going muon (i.e. a neutrino candidate) detected in 6/12 detector lines: time

  10. Selected results atmospheric muon flux atmospheric neutrinos point sources  see talk by Juan Pablo Gomez diffuse νμ flux magnetic monopoles dark matter  see talk by Juande Zornoza

  11. Atmospheric muons online tracking Data MC (corsika + qgsjet) Systematics on MC corsika + qgsjet (poly) corsika + sibyll mupage Zenith angle distribution of reconstructed tracks from atmospheric muons with a 5 line detector. Astropart.Phys. 34 (2010) 179. • systematic error due to +/- 10% on absorption length = +25%/-20%; • syst. err. due to -15% on PMT efficiency (QE, eff. area etc) = -15%; • syst. err. due to cutoff in angular accept. = +20%/-15%; • total systematic uncertainty +/- 30%.  Within systematic uncertainties the measurements cannot distinguish between the models considered Systematic uncertainties: +30% primary flux; +25% hadronic interaction model

  12. 2,5km 6km Muon depth-intensity relation Astropart.Phys. 34 (2010) 179.  Results are in agreement, within the systematic uncertainties, with the theoretical predictions and previous measurements

  13. Atmospheric neutrinos online tracking data set: 2007-2008 data taken with 5 lines (2007) and 9, 10, and 12 lines (2008) up-going down-going 341 days detector live time, single- and multi-line fit 1062  cand. • good agreement with Monte Carlo • atmospheric neutrinos: • 916 (30% syst. error) • atmospheric muons: • 40 (50% syst. error) elevation angle  1062 neutrino candidates:  3.1  candidates/day

  14. Badly reconstructed Well reconstructed Search for point-like  sources arXiv:1108.0292v1 [astro-ph.HE] precise tracking data set: 2007-2008 data taken with 5 lines (2007) and 9, 10, and 12 lines (2008) uncertainties in angle reconstruction: median: 0.5  0.1O 12-line data: 0.4  0.1O absolute orientation: 0.1O

  15. Search for point-like  sources Equatorial coordinates arXiv:1108.0292v1 [astro-ph.HE] • Two distinct approaches: • all sky search • list of candidates  24 source candidates point-like sources search see J. Gomez’s talk H. Löhner, High Energy Neutrino Flux

  16. Search for diffuse νμ flux • background from • atmospheric : ~ E-3.5 • + prompt neutrinos • cosmic • neutrino models: ~ E-2 • search for high-energy diffuse-flux tail Phys. Lett. B 696 (2011) 16. Energy estimate R based on extra light from delayed OM hits due to high-energy EM showers  no excess of high-energy events above expected flux from atmospheric 

  17. Diffuse flux: upper limits Phys. Lett. B 696 (2011) 16. (334 days of equivalent live time) Upper limit is E2F(E)90%= 4.8×10-8 GeV cm-2 s-1 sr-1 for 20 TeV<E<2.5 PeV

  18. Search for magnetic monopoles Magnetic monopoles emit 8500 more Cherenkov light than a muon  can be detected by ANTARES Selection optimized for the discovery potential (in a blind way) Two estimators to discriminate MM from atmospheric background • The number of hits estimates the quantity of light • The ratio of two tracking reconstruction, λ=log(χ2β=1 /χ2β) where χ2β=1 standard muon algorithm (β =1) χ2β modified algorithm (β free)

  19. Monopoles: upper limits (116 days of equivalent live time with 2008 data)  no excess of events above the expected atmospheric background flux Upper limit is F(E)90%= 1.3×10-17 cm-2 s-1 sr-1 at β≈1

  20. Multimessenger astronomy • Strategy • higher discovery potential by observing different probes • higher significance by coincidence detection • higher efficiency by relaxed cuts SNEWS SuperNova Early Warning System TaToO optical follow up Ligo/Virgo Gravitational waves: trigger + dedicated analysis chain GCN GRB Coord. Network: γ satellites

  21. TAToO project TAToO Optical follow-up of neutrino alerts from ANTARES in order to search for and identify transient sources (GRB, AGN flares…) Reconstruction “on-line” (<10ms) Trigger: multiplet / HE singlet Alert neutrino (GCN) 1.9° x 1.9° ANTARES ν Real time send <10s Tarot and ROTSE Large sky coverage (>2π sr) + high duty cycle Improved sensitivity (1 neutrino may lead to a discovery !!!) No hypothesis on the nature of the source Non dependent on the availability of external triggers Advantages:

  22. Future plans: KM3NeT concept array of multi-PMT optical modules (OM) sensing Cherenkov light instrumented volume several km3 sensitive to all  flavours E > 0.1 GeV angular resolution min 0.1o for E > 10 TeV acceptance: up-going tracks, up to 10o above horizon  

  23. Conclusions ANTARES completed since May 2008 complements the sky coverage of IceCube has a broad physics program new diffuse-flux limit competitive new magnetic monopolesflux limit multi-messenger observations on alert paves the way for KM3NeT

More Related