Chapter 5 network layer
This presentation is the property of its rightful owner.
Sponsored Links
1 / 44

Chapter 5 Network Layer PowerPoint PPT Presentation


  • 73 Views
  • Uploaded on
  • Presentation posted in: General

Chapter 5 Network Layer. CIS 81 Networking Fundamentals Rick Graziani Cabrillo College [email protected] Last Updated: 3/9/2008. This Presentation.

Download Presentation

Chapter 5 Network Layer

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Chapter 5 network layer

Chapter 5Network Layer

CIS 81 Networking Fundamentals

Rick Graziani

Cabrillo College

[email protected]

Last Updated: 3/9/2008


This presentation

This Presentation

  • For a copy of this presentation and access to my web site for other CCNA, CCNP, and Wireless resources please email me for a username and password.

    • Email: [email protected]

    • Web Site: www.cabrillo.edu/~rgraziani


Chapter 5 network layer

Note

  • This presentation is not in the order of the book or online curriculum.

  • This presentation also contains information beyond the curriculum.


Network layer overview

Network Layer Overview


Network layer

Network Layer

  • IPv4


Chapter 5 network layer

IP Header

Application Header + data


Chapter 5 network layer

IP

IP

IP

IP


Focus on transport layer

Focus on Transport Layer

IP

IP


Network layer1

Network Layer

  • The Network layer (Layer 3) provides services to exchange the data over the network between identified end devices.

  • Layer 3 uses four basic processes:

    • Addressing

    • Encapsulation

    • Routing

    • Decapsulation


Addressing

Addressing

172.16.3.10

192.168.100.99

Source IP = 192.168.100.99

Destination IP = 172.16.3.10

Source IP = 172.16.3.10

Destination IP = 192.168.100.99

  • Source IP Address

  • Destination IP Address

  • More later!


Encapsulation and decapsulation

Encapsulation and Decapsulation

Data Link Trailer

Data Link Header

IP Header

TCP Header

HTTP Header

Data

Data Link Trailer

Data Link Trailer

Data Link Header

Data Link Header

IP Packet

IP Packet

Data Link Trailer

Data Link Trailer

Data Link Header

Data Link Header

IP Packet

IP Packet

Data Link Trailer

Data Link Trailer

Data Link Header

Data Link Header

IP Packet

IP Packet

Data Link Trailer

Data Link Header

IP Header

TCP Header

HTTP Header

Data


Decapsulation

Application Header + data

Decapsulation

  • When the packet arrives at the destination host and is processed at Layer 3.

  • The host examines the destination address to verify that the packet was addressed to this device.

  • If the address is correct, the packet is decapsulated by the Network layer and the Layer 4 PDU contained in the packet is passed up to the appropriate service at Transport layer.


Routing

Routing

Source IP = 192.168.100.99

Destination IP = 172.16.3.10

172.16.3.10

192.168.100.99

  • Routers examine Layer 3 Destination IP addresses to forward packets.

    • Search their routing tables for a match with a network address.

    • Send the packet on to the next-hop router.

    • Last router in path forwards the router to the host matching the Destination IP address of the packet.


Network layer protocols

Network Layer Protocols

  • The Internet Protocol (IPv4 and IPv6) is the most widely-used Layer 3 data carrying protocol and will be the focus of this course.


Ipv4 basic characteristics

IPv4 basic characteristics:


Connectionless

Connectionless

  • IP packets are sent without notifying the end host that they are coming.

    • TCP: A connection-oriented protocol does requires a connection to be established prior to sending TCP segments.

    • UDP: A connectionless protocol does not require a session to be established.


Best effort service unreliable

Best Effort Service (unreliable)

  • The mission of Layer 3 is to transport the packets between the hosts while placing as little burden on the network as possible.

    • Speed over reliability

  • Layer 3 is not concerned with or even aware of the type of data contained inside of a packet.

    • This responsibility is the role of the upper layers as required.

  • Unreliable: IP does not have the capability or responsibility to manage, and recover from, undelivered or corrupt packets.

    • TCP’s responsibility at the end-to-end hosts


Media independent

Media Independent

  • Responsibility of the OSI Data Link layer to take an IP packet and prepare it for transmission over the communications medium.

  • Transport of IP packets is not limited to any particular medium.

  • In some cases a router will need to split up a packet when forwarding it from one media to a media with a smaller MTU.

    • fragmenting the packet or fragmentation.


Chapter 5 network layer

TCP MSS defines the maximum size of the data in the TCP segment.

20 octets

20 octets

1460 octets

Ethernet MTU defines the maximum size of the data in the Ethernet frame.

TCP MSS = 1460

Data = 1460 octets

The host using Ethernet, MTU of 1500 octets so I will set my MSS to 1460.

1500 octets

Determining TCP MTU

  • Typically, an end system uses the "outgoing interface MTU" minus 40 as its reported MSS.

  • For example, an TCP over IP over Ethernet MSS value is 1460 (1500 - 40 = 1460).

  • When a host (usually a PC) initiates a TCP session with a server, it negotiates the TCP segment size by using the maximum segment size (MSS) option field in the TCP SYN packet. (curriculum say IP segment).

  • The value of the MSS field is determined by the maximum transmission unit (MTU) configuration on the host.

  • The default Ethernet MTU value for a PC is 1500 bytes. (curriculum says MSS)


Ip header

IP Header

  • IP Destination Address

    • 32-bit binary value that represents the packet destination Network layer host address.

  • IP Source Address

    • 32-bit binary value that represents the packet source Network layer host address.


Chapter 5 network layer

IP’s TTL – Time To Live field

  • When a packet is first generated a value is entered into the TTL field.

  • Originally, the TTL field was the number of seconds, but this was difficult to implement and rarely supported.

  • Now, the TTL is now set to a specific value which is then decremented by each router.


Chapter 5 network layer

IP’s TTL – Time To Live field

Decrement by 1, if 0 drop the packet.

  • If the router decrements the TTL field to 0, it will then drop the packet (unless the packet is destined specifically for the router, I.e. ping, telnet, etc.).

  • Common operating system TTL values are:

    • UNIX: 255

    • Linux: 64 or 255 depending upon vendor and version

    • Microsoft Windows 95: 32

    • Other Microsoft Windows operating systems: 128


Chapter 5 network layer

  • Assigned Numbers (RFC 1700, J. Reynolds, J. Postel, October 1994):

    • IP TIME TO LIVE PARAMETER

    • The current recommended default time to live (TTL) for the Internet Protocol (IP) is 64.

http://www.switch.ch/docs/ttl_default.html

TTL Overview - Disclaimer:

The following list is a best effort overview of some widely used TCP/IP stacks. The information was provided by vendors and many helpful system administrators. We would like to thank all these contributors for their precious help ! SWITCH cannot, however, take any responsibility that the provided information is correct. Furthermore, SWITCH cannot be made liable for any damage that may arise by the use of this information.

+-------------------------------+-------+---------+---------+

| OS Version |"safe" | tcp_ttl | udp_ttl |

+-------------------------------+-------+---------+---------+

AIX n 60 30

DEC Pathworks V5 n 30 30

FreeBSD 2.1R y 64 64

HP/UX 9.0x n 30 30

HP/UX10.01 y 64 64

Irix 5.3 y 60 60

Irix 6.x y 60 60

Linux y 64 64

MacOS/MacTCP 2.0.x y 60 60

OS/2 TCP/IP 3.0 y 64 64

OSF/1 V3.2A n 60 30

Solaris 2.x y255255

SunOS 4.1.3/4.1.4 y 60 60

Ultrix V4.1/V4.2A n 60 30

VMS/Multinet y 64 64

VMS/TCPware y 60 64

VMS/Wollongong 1.1.1.1 n128 30

VMS/UCX (latest rel.) y128128

MS WfW n 32 32

MS Windows 95 n 32 32

MS Windows NT 3.51 n 32 32

MS Windows NT 4.0 y128128

Safe: TCP and UDP initial TTL values should be set to a "safe" value of at least 60 today.


Chapter 5 network layer

IP’s TTL – Time To Live field

Decrement by 1, if 0 drop the packet.

  • The idea behind the TTL field is that IP packets can not travel around the Internet forever, from router to router.

  • Eventually, the packet’s TTL which reach 0 and be dropped by the router, even if there is a routing loop somewhere in the network.


Ip s protocol field

IP’s Protocol Field

  • Protocol field enables the Network layer to pass the data to the appropriate upper-layer protocol.

  • Example values are:

    • 01 ICMP

    • 06 TCP

    • 17 UDP


Ip s tos field

IP’s ToS Field

  • Type-of-Service is used to determine the priority of each packet.

  • Enables Quality-of-Service (QoS) mechanism for high priority traffic such as;

    • VoIP

    • Streaming video

  • For ToS to be used:

    • Hosts set ToS field (can be an intermediary device such as a switch)

    • Routersmust be configured to examine ToS


Ip fragmentation

IP Fragmentation

Original IP Packet

IP

Data = 1480 bytes

IP Header = 20 bytes

IP

Data = 500

IP Packet Fragments

IP

Data = 500

IP

Data = 480

L2

Data = 500

L2

  • A router may have to fragment a packet when forwarding it from one medium to another medium that has a smaller MTU.

    • If Don’t Fragment flag set, it will not fragment packet, but discard it.

  • Fragment Offset field and More Fragments flag is used to reconstruct the packet at the destination host.


Ip fragmentation1

IP Fragmentation

IP Packet

IP Packet

IP Packet

IP Packet

IP Packet

Network link with larger MTU

Network link with smaller MTU

Network link with larger MTU

IP Packet

IP Packet

  • When fragmentation occurs, it does not get reconstructed until it reaches the host.

    • This takes processing time.

    • Fragment Offset field identifies the order

IP Packet

IP Packet

IP Packet

IP Packet


Path mtu discovery

Path MTU Discovery

Path MTU Discovery (Not discussed here, but is important)

  • RFC 1191 (RFC1191)

  • Path MTU Discovery and Filtering ICMPMarc Slemko

    • Link on CIS 81 web page


Other ipv4 fields

Other IPv4 fields

  • Version - Contains the IP version number (4)

  • Header Length (IHL) - Specifies the size of the packet header.

  • Packet Length - This field gives the entire packet size, including header and data, in bytes.

  • Identification - This field is primarily used for uniquely identifying fragments of an original IP packet

  • Header Checksum - The checksum field is used for error checking the packet header.

  • Options - There is provision for additional fields in the IPv4 header to provide other services but these are rarely used.


Host and network addresses

Host and Network Addresses


Ip addresses first look

IP Addresses – First look

Kiwi Airliners - Network Address 172.16.0.0/16

172.16.40.123/16

172.16.10.100/16

172.16.20.77/16

172.16.30.39/16

172.16.20.96/16

172.16.40.51/16

172.16.10.55/16

172.16.30.10/16

172.16.1.1/16

172.16.10.3/16

172.16.40.29/16

172.16.20.103/16

172.16.30.111/16

  • Host IP addresses are IP addresses assigned to end devices such as:

    • Client computers

    • Server computers

    • Printers

    • Router interfaces

  • Note: the /16 refers to the subnet mask, which will be discussed later.

  • Note: Intermediary devices such as a switch may have an IP address to allow the network administrator to Telnet to the device for remote management.


Ip addresses first look1

IP Addresses – First look

Kiwi Airliners - Network Address 172.16.0.0/16

172.16.40.123/16

172.16.10.100/16

172.16.20.77/16

172.16.30.39/16

172.16.20.96/16

172.16.40.51/16

172.16.10.55/16

172.16.30.10/16

172.16.1.1/16

172.16.10.3/16

172.16.40.29/16

172.16.20.103/16

172.16.30.111/16

  • Host IP addresses are members of a group of addresses call the Network Address

  • IANA (Internet Assigned Numbers Authority) have the responsibility to allocate network addresses.

  • A company or individual needing a network addresses typically goes to their ISP

  • ISPs then allocate network addresses to their customers.

  • More detail in the next chapter.


Ip addresses first look2

IP Addresses – First look

Network Address 172.16.0.0

172.16.10.100/16

Network Address 192.168.1.0/30

172.16.10.55/16

ISP

Internet

192.168.1.2/30

172.16.1.1/16

192.168.1.1/30

172.16.10.3/16

  • Default Gateway

    • A router which is used to forward packets out of the network.

    • This is a host IP address on the router.

  • The default gateway IP address is typically a host IP address which is on the same network as the host itself.

  • The host only has to be aware of:

    • Its own network address

    • Default gateway IP address to reach all devices outside its own network


Ip addresses first look3

IP Addresses – First look

Network Address 172.16.0.0

172.16.10.100/16

Gateway: 172.16.1.1

Network Address 192.168.1.0/30

172.16.10.55/16

ISP

Gateway: 172.16.1.1

Internet

192.168.1.2/30

172.16.1.1/16

192.168.1.1/30

172.16.10.3/16

Gateway: 172.16.1.1

  • All hosts in the same network will typically have the same default gateway IP address.


Confirming ip address default gateway

Confirming IP Address, Default Gateway

Root# ifconfig

eth0 Link encap:Ethernet HWaddr 00:0F:20:CF:8B:42

inet addr:172.16.1.100 Bcast:172.16.255.255 Mask:255.255.0.0

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:2472694671 errors:1 dropped:0 overruns:0 frame:0

TX packets:44641779 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:1000

RX bytes:1761467179 (1679.8 Mb) TX bytes:2870928587 (2737.9 Mb)

Interrupt:28

C:\> ipconfig

Windows IP Configuration

Ethernet adapter Local Area Connection:

Connection-specific DNS Suffix . :

IP Address. . . . . . . . . . . . : 172.16.10.100

Subnet Mask . . . . . . . . . . . : 255.255.0.0

Default Gateway . . . . . . . . . : 172.16.1.1

Linux: netstat –rn for default gateway information.


Subnets

Subnets

Kiwi Airliners - Network Address 172.16.0.0/16

172.16.10.0/24

172.16.20.0/24

172.16.30.0/24

172.16.40.0/24

172.16.40.123/24

172.16.10.100/24

172.16.30.39/24

172.16.20.77/24

172.16.20.96/24

172.16.40.51/24

172.16.10.55/24

172.16.30.10/24

172.16.1.1/24

172.16.10.3/24

172.16.40.29/24

172.16.20.103/24

172.16.30.111/24

  • Networks can be subdivided into subnets.

  • This provides for several benefits which we will discuss later.

  • Networks can be grouped based on factors that include:

    • Geographic location, Purpose, Ownership

172.16.10.1/24

172.16.20.1/24

172.16.30.1/24

172.16.40.1/24


A quick look at routing

A Quick Look at Routing


Routing first look

Routing – First Look

Network 192.168.1.0/24

Network 192.168.2.0/24

192.168.1.254/24

  • Routers know about:

    • Directly connected networks (C):

      • Network addresses of its interfaces

    • Remote networks

      • Static routes

      • Dynamic Routing Protocol (R = RIP)

C 192.168.2.0/24 is direction connected, FastEthernet0/1


Routing first look1

Routing – First Look

Network 192.168.1.0/24

Network 192.168.2.0/24

192.168.1.254/24

  • Routers know about:

    • Directly connected networks (C):

      • Network addresses of its interfaces

  • When a router is configured with the IP address/mask on an interface the router knows that it has an interface which is part of that network.

  • This is just like a host that is configured with an IP address/mask. (coming)

C 192.168.2.0/24 is direction connected, FastEthernet0/1


Routing first look2

Routing – First Look

Network 192.168.1.0/24

Network 192.168.2.0/24

192.168.1.254/24

  • Routers learn about remote networks using:

    • Static routes

    • Dynamic Routing Protocol (R = RIP)

  • Routes in a routing table have three main features:

    • Destination network

    • Next-hop

    • Metric

C 192.168.2.0/24 is direction connected, FastEthernet0/1


Routing first look3

Routing – First Look

Network 192.168.1.0/24

Network 192.168.2.0/24

192.168.1.254/24

  • Static routes

    • Manually entered by the administrator

  • Dynamic Routing protocols

    • Routers automatically learn about remote networks

    • Ex: RIP, EIGRP, OSPF, IS-IS, BGP

C 192.168.2.0/24 is direction connected, FastEthernet0/1


Host routing table

Host Routing Table

netstat –r

or

route print

  • Hosts also have a local routing table.

  • Usually only contains:

    • Its own network address (directly connected network)

    • Default gateway IP address

  • Hosts usually do not have remote networks in their routing tables


Chapter 5 network layer1

Chapter 5Network Layer

CIS 81 Networking Fundamentals

Rick Graziani

Cabrillo College

[email protected]

Last Updated: 3/9/2008


  • Login