1 / 10

Flex cable feasibility study : Context / Objectives

MISTRAL & ASTRAL Sensors Flex feasibility study Gilles CLAUS (on behalf of PICSEL-ALICE team of IPHC-Strasbourg). 270 mm. > 15 mm. Flex cable feasibility study : Context / Objectives. Goal of this study  Based on STAR-PXL flex cable (proven technology)

yuval
Download Presentation

Flex cable feasibility study : Context / Objectives

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. MISTRAL & ASTRAL SensorsFlex feasibility studyGilles CLAUS (on behalf of PICSEL-ALICE team of IPHC-Strasbourg)

  2. 270 mm > 15 mm Flex cable feasibility study : Context / Objectives • Goal of this study  Based on STAR-PXL flex cable (proven technology) • Estimate minimum achievable cable width • Calculate voltage drop along the power bus • Calculate material budget • Design decisions for evaluation • Cable length for 9 chips ( 15 mm x 30 mm ) 9 x 30 mm = 270 mm • Cable width  15 mm + Bonding area ? mm (pads, bonding wire loop, decoupling capacitors) • Cable design done on FR4 by C.Illinger • GND & VDD traces  7 mm width – 30 µm Aluminium IPHC gilles.claus@iphc.cnrs.fr

  3. Flex cable feasibility study : Minimum cable width • Minimum cable width : Study done by M.Goffe & IPHC µTechnique Team (M.Imhoff & Co) • 50 µm thick sensors • Wedge bonding • Minimum bonding pads distance : Chip  Flex • 500 µm  Loop too short • 800 µm  Acceptable value for bonding reliability • Result ~ 1 mm  Cable width ~ 16 mm • Better result achievable ? 800 µm 500 µm 500 µm IPHC gilles.claus@iphc.cnrs.fr

  4. ΔU / segment 2 ΔU / segment 1 ΔU / segment 9 9 x I I 8 x I 2 x I Chip No 1 Chip No 9 Chip No 3 Chip No 2 One segment Flex cable feasibility study : Voltage drop • Calculation hypothesis • Common GND & VDD traces for analogue & digital • Aluminium traces : 7 mm width – 30 µm thick – ρ Al = 26.10-9 ohm.m • Sensors : 15 x 30 mm² - Power supply = 1,8 V • MISTRAL : Pd = 200 mW/cm²  I = 0,5 A/Chip - ASTRAL : Pd = 85 mW/cm²  I = 0,21 A/Chip • Voltage drop  MUST be <= 200 mV • Distance between two sensors = “One segment” • ρ Al = 26.10-9 ohm.m – Trace 7 mm width - 30 µm thick  R = 3,7 m ohm • Total voltage drop • ΔV1 = R x I, ΔV2 = R x 2 x I … ΔV9 = R x 9 x I  Arithmetic serie • Voltage drop = Sum of the serie = 9 x ( ΔV1 + ΔV9) / 2 = 9 x (RI + 9RI) / 2 = 45 x R x I Chip • MISTRAL (Pd = 200 mW/cm²  I = 0,5 A/Chip) • ΔV = 45 x R x I Chip = 45 x 0,0037 x 0,5 = 83 mV  Total (Vdd, gnd) = 166 mV • ASTRAL (Pd = 85 mW/cm²  I = 0,21 A/Chip) • ΔV = 45 x R x I Chip = 45 x 0,0037 x 0,21 = 35 mV  Total (Vdd, gnd) = 70 mV IPHC gilles.claus@iphc.cnrs.fr

  5. Flex cable feasibility study : Voltage drop • Remark • Voltage drop calculation done in DC • This true ONLY if there is enough decoupling capacitors / chip on the flex • If it’s not the case  There is an AC component  I power bus = I dc + I ac • At which freauency ? • Clock and harmonics  Input 40 MHz – Serializer 600 MHz – 1,2 GHz (1,2 Gb/s – 2,4 Gb/s)  AC component if unbalanced currents (should be minimized with differential architecture - LVDS) • At frames frequency : T r.o = 20,8 µs  F = 100 KHz  No risk with skin effect BUT Low frequency requires high capacity value • What’s about skin effect ? • Gianluca’s Talk yesterday  Aluminium 12 µm @ 50 MHz < 1 / 2 Trace thickness (35 µs) • Which effect is more critical : Traces inductance / Skin effect ? • Is there simulations ? • Chip current profile ? IPHC gilles.claus@iphc.cnrs.fr

  6. Flex cable feasibility study : Material budget • Radiation length • Kapton flex 50 µm Xo = 34,2 cm  X = 0,0146 % Xo • 2 x Aluminium 30 µm X0 = 8,897 cm  X = 2 x 0,037 % Xo = 0,074 % Xo • 2 x Adhesive 25 µm Xo = 33,8 cm  X = 2 x 0,0074 % Xo = 0,0148 % Xo • Total X = 0,1 % Xo • Total thickness = 160 µm Al 30 µm Adhesive 25 µm Kapton 50 µm Adhesive 25 µm Al 30 µm IPHC gilles.claus@iphc.cnrs.fr

  7. Flex cable feasibility study : Conclusion • Flex • Does it makes sense to continue this study ? • Now it’s a design in a CAD tools  Nothing has been produced • Is there manpower to pursue this study ? • Power distribution – Voltage drop • Definition of minimum decoupling capacitors value / chip • Skin effect / Traces inductance • Chip current profile IPHC gilles.claus@iphc.cnrs.fr

  8. Backup IPHC gilles.claus@iphc.cnrs.fr

  9. IPHC gilles.claus@iphc.cnrs.fr

  10. IPHC gilles.claus@iphc.cnrs.fr

More Related