Download
slide1 n.
Skip this Video
Loading SlideShow in 5 Seconds..
ROOT ROOT.PAT ROOT.TES (ROOT.WGT) (ROOT.FWT) (ROOT.DBD) PowerPoint Presentation
Download Presentation
ROOT ROOT.PAT ROOT.TES (ROOT.WGT) (ROOT.FWT) (ROOT.DBD)

ROOT ROOT.PAT ROOT.TES (ROOT.WGT) (ROOT.FWT) (ROOT.DBD)

443 Views Download Presentation
Download Presentation

ROOT ROOT.PAT ROOT.TES (ROOT.WGT) (ROOT.FWT) (ROOT.DBD)

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Use Analyze root –34 for easy way • (the file meta let you override defaults) • Use meta root for full mode • - e.g meta root • - use MetaUI for input file ROOT ROOT.PAT ROOT.TES (ROOT.WGT) (ROOT.FWT) (ROOT.DBD) MetaNeural ROOT.XXX ROOT.TTT ROOT.TRN (ROOT.DBD) ROOT.WGT ROOT.FWT

  2. S S S S S • ANALYZE = MetaNeural Alternative Code • Either run meta root analyze root.pat –34 (single training and testing) analyze root.pat –3434 (LOO) analyze root.txt 34 (bootstrap mode) • Results for analyze are in resultss.xxx and resultss.ttt • Results from MetaNeural are in root.xxx and root.ttt • MetaNeural input file is generated automatically in analyze • The file name meta overrides the default input file for analyze

  3. MetaNeural Input File for the ROOT 4 => 4 layers 2 => 2 inputs 16 => # hidden neurons in layer #1 4 => # hidden neurons in layer# 2 1 => # outputs 300 => epoch length (hint:always use 1, for the entire batch) 0.01 => learning parameters by weight layer (hint: 1/# patterns or 1/# epochs) 0.01 0.01 0.5 => momentum parameters by weight layer (hint use 0.5) 0.5 0.5 10000000 => some very large number of training epochs 200 => error display refresh rate 1 =>sigmoid transfer function 1 => Temperature of sigmoid check.pat => name of file with training patterns (test patterns in root.tes) 0 => not used (legacy entry) 100 => not used (legacy entry) 0.02000 => exit training if error < 0.02 0 => initial weights from a flat random distribution 0.2 => initial random weights all fall between –2 and +2

  4. EXAMPLE DATA SETS • IRIS data • Checkerboard data • Svante wold’s QSAR data • Cherkassky’s nonlinear function • Albumin QSAR data

  5. FILES RELATED TO CHECKERBOARD EXAMPLE CHECK_NET.BAT CHECK_DATA.BAT CHECK_TEST.BAT CHECK.PAT

  6. MetaNeural INPUT FILE FOR CHECKERBOARD DATA

  7. QSAR DATA SET EXAMPLE: 19 Amino Acids From Svante Wold, Michael Sjölström, Lennart Erikson, "PLS-regression: a basic tool of chemometrics," Chemometrics and Intelligent Laboratory Systems, Vol 58, pp. 109-130 (2001) RENSSELAER

  8. PLS 1 latent variable

  9. PLS 1 latent variable No aromatic AAs

  10. 1 latent variable Gaussian Kernel PLS (sigma = 1.3) With aromatic AAs

  11. Chemoinformatic Models to Predict Binding Affinities to Human Serum Albumin:G. Colmenarejo et. al., J. Med. Chem 2001, 44, pp. 4370-4378 95 Molecules Widely different compounds 250-1500+ Descriptors

  12. Binding affinities to human serum • albumin (HSA): log K’hsa • Gonzalo Colmenarejo, GalaxoSmithKline • J. Med. Chem. 2001, 44, 4370-4378 • 95 molecules, 250-1500+ descriptors • Widely different compounts

  13. Histograms PIP (Local Ionization Potential) Wavelet Coefficients Electron Density-Derived TAE-wavelet Descriptors 1 ) Surface properties are encoded on 0.002 e/au3 surface Breneman, C.M. and Rhem, M., J. Comp. Chem., 1997,18(2), p. 182-197 2 ) Histograms or wavelet encoded of surface properties give TAE property descriptors

  14. PEST-Shape Descriptors: Surface Property-Encoded Ray Tracing • TAE Internal Ray Reflection - low resolution scan Isosurface (portion removed) with 750 segments RENSSELAER

  15. Shape-Aware Molecular Descriptors from Property/Segment-Length Distributions • Segment length and point-of-incidence value form 2D-histogram • Each bin of 2D-histogram becomes a hybrid descriptor • 36 descriptors per hybrid length-property PIP vs Segment Length RENSSELAER

  16. training

  17. testing

  18. CHERKASSKY’S NONLINEAR BENCHMARK DATA • Generate 500 datapoints (400 training; 100 testing) for: Cherkas.bat

  19. Y=sin|x|/|x| • Generate 500 datapoints (100 training; 500 testing) for:

  20. Comparison Kernel-PLS with PLS 4 latent variables sigma = 0.08 PLS Kernel-PLS