1 / 41

Tolleranze di lavorazione

Tolleranze di lavorazione. Le tolleranze di lavorazione sono di:. Dimensione Geometriche (forma e posizione) Rugosità superficiale. Le tolleranze di dimensione. La tolleranza di dimensione è il campo entro il quale può variare la dimensione stessa.

yaphet
Download Presentation

Tolleranze di lavorazione

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Tolleranze di lavorazione LIUC - Ingegneria Gestionale

  2. Le tolleranze di lavorazione sono di: • Dimensione • Geometriche (forma e posizione) • Rugosità superficiale LIUC - Ingegneria Gestionale

  3. Le tolleranze di dimensione La tolleranza di dimensione è il campo entro il quale può variare la dimensione stessa. Assegnare una tolleranza è assolutamente necessario data l’impossibilità di costruire due oggetti esattamente identici. L’assegnazione della tolleranza è compito di chi progetta che deve valutare quanto dovranno essere simili le parti prodotte (intercambiabilità). Inoltre, nel caso di accoppiamenti tra più parti, deve anche considerare, costruttivamente, se e quanto le parti di accoppiamento debbano interferire tra loro. LIUC - Ingegneria Gestionale

  4. Le tolleranze di dimensione Il modo standardizzato per assegnare le tolleranze di dimensione fa riferimento all’accoppiamento foro-albero e, come riferimento può essere presa la dimensione nominale del foro (o dell’albero). Occorre innanzitutto stabilire se l’accoppiamento debba essere libero (ci sarà sempre gioco tra foro e albero), forzato (l’albero sarà sempre più grande del foro) o incerto (ci sarà o meno interferenza tra foro e albero in funzione delle loro dimensioni effettive). Occorre stabilire poi quanto precisi debbano essere tali accoppiamenti. Per esempio, nel caso di un accoppiamento forzato, quanto vale l’interferenza massima ammissibile. LIUC - Ingegneria Gestionale

  5. Le tolleranze di dimensione Lo standard UNI EN per la definizione sui disegni delle tolleranze dimensionali dei fori, IT, prevede l’attribuzione alla quota nominale del foro di due attributi. Il primo, lettera maiuscola dell’alfabeto, colloca la posizione dell’estremo inferiore della dimensione rispetto alla linea dello zero cui viene fatta corrispondere la dimensione nominale. Il secondo, numero, definisce quanto dista l’estremo superiore dall’inferiore LIUC - Ingegneria Gestionale

  6. Le tolleranze di dimensione In particolare per i fori, la lettera H posiziona l’estremo inferiore proprio in corrispondenza della dimensione nominale. Le lettere dalla G alla A in posizioni via via crescenti (foro più grande) e le lettere dalla J alla Z in posizioni via via decrescenti (foro più piccolo). LIUC - Ingegneria Gestionale

  7. Le tolleranze di dimensione Specularmente, per la definizione delle tolleranze dimensionali degli alberi, il primo attributo, lettera minuscola dell’alfabeto, colloca la posizione dell’estremo superiore della dimensione rispetto alla linea dello zero cui viene fatta corrispondere la dimensione nominale. Il secondo, numero, definisce quanto dista l’estremo inferiore dal superiore. LIUC - Ingegneria Gestionale

  8. Le tolleranze di dimensione Quindi per gli alberi, la lettera h posiziona l’estremo superiore proprio in corrispondenza della dimensione nominale. Le lettere dalla g alla a in posizioni via via decrescenti (albero più piccolo) e le lettere dalla j alla z in posizioni via via crescenti (albero più grande). LIUC - Ingegneria Gestionale

  9. Le tolleranze di dimensione LIUC - Ingegneria Gestionale

  10. Le tolleranze di dimensione Il secondo attributo, un numero da 1 a 18 sia per i fori che per gli alberi, stabilisce il grado, vale a dire l’ampiezza della tolleranza; in pratica l’estremo superiore per il foro e inferiore per l’albero. Più è alto il numero più è ampia la tolleranza. Il campo di tolleranza dipende anche dalla dimensione nominale: a parità di numero, più è piccola più è ristretto il campo di tolleranza LIUC - Ingegneria Gestionale

  11. Le tolleranze di dimensione I numeri fino a 4 sono per lavorazioni di massima precisione, i numeri da 5 a 11 sono per lavorazioni di buona e media precisione, i numeri oltre 11 sono per lavorazioni grossolane LIUC - Ingegneria Gestionale

  12. Le tolleranze di dimensione Tabella dei campi di tolleranza LIUC - Ingegneria Gestionale

  13. Le tolleranze di dimensione Esempi di tolleranze di dimensione Φ 80 H6 foro di dimensione nominale 80 con diametri ammissibili minimo 80 e massimo 80,022 Φ 150 h8 albero di dimensione nominale 150 con diametri ammissibili massimo 150 e minimo 149,037 LIUC - Ingegneria Gestionale

  14. Le tolleranze di dimensione Gli accoppiamenti Per assegnare le tolleranze a due parti da accoppiare si deve scegliere innanzitutto come riferimento il foro o l’albero. Scelto ad esempio il foro, gli si assegnerà una tolleranza che avrà come estremo inferiore la dimensione nominale (H) mentre l’estremo superiore sarà funzione della precisione (normalmente da 6, molto preciso, a 11, grossolano). Come si potrà notare la precisione assegnata agli alberi è normalmente di un grado superiore. Questo perché è possibile ottenere naturalmente precisioni superiori lavorando superfici esterne piuttosto che interne. LIUC - Ingegneria Gestionale

  15. Le tolleranze di dimensione Gli accoppiamenti Se l’accoppiamento dovrà essere molto preciso (foro H6) e stabile/forzato, la dimensione dell’albero potrà essere tollerata da p5 a x5; se incerto, da j5 a n5; se mobile, da e5 a h5. Accoppiamento preciso (foro H7) e stabile/forzato, tolleranza dell’albero da p6 a z6; se incerto, da j6 a n6; se mobile, da e6 a h6. Accoppiamento medio (foro H8) e stabile/forzato, tolleranza dell’albero da p7 a z7; se incerto, da j7 a n7; se mobile, da f8 a h7. Accoppiamento grossolano (foro H11) e mobile, tolleranza dell’albero da a11 a h11. LIUC - Ingegneria Gestionale

  16. Le tolleranze di dimensione Gli accoppiamenti Scegliendo invece come riferimento l’albero, per un accoppiamento molto preciso (albero h5) e stabile/forzato, la dimensione del foro potrà essere tollerata da P6 a X6; se incerto, da J6 a N6; se mobile, da E6 a H6. Accoppiamento preciso (albero h6) e stabile/forzato, tolleranza dell’albero da P7 a Z7; se incerto, da J7 a N7; se mobile, da E7 a H7. Accoppiamento medio (albero h7) e mobile, tolleranza del foro da E8 a H8. Accoppiamento grossolano (albero h11) e mobile, tolleranza del foro da A11 a H tolleranza dell’albero 11. LIUC - Ingegneria Gestionale

  17. Le tolleranze di dimensione Serie di quote tollerate Si tratta del caso di più lunghezze in serie tollerate. Il valore nominale della lunghezza totale sarà pari alla somma dei valori nominali delle quote parziali. Gli scostamenti, superiore e inferiore, della lunghezza totale nominale saranno pari alle somme, rispettivamente, degli scostamenti inferiori e superiori delle quote parziali. LIUC - Ingegneria Gestionale

  18. Le tolleranze geometriche Si distinguono in tolleranze di: Forma (rettilineità, planarità, circolarità, cilindricità, forma di un profilo, forma di una superficie) Orientamento (parallelismo, perpendicolarità, inclinazione) Posizione (localizzazione, concentricità, simmetria) Oscillazione (circolare assiale, circolare radiale) LIUC - Ingegneria Gestionale

  19. Le tolleranze geometriche Esempi di tolleranze geometriche Tolleranza di rettilineità. Il campo di tolleranza è compreso tra due rette distanti tra loro 0,03 mm LIUC - Ingegneria Gestionale

  20. Le tolleranze geometriche Esempi di tolleranze geometriche Tolleranza di planarità. La distanza tra le quote minime e massime dei piani inferiore e superiore può essere al massimo di 0,1 mm LIUC - Ingegneria Gestionale

  21. Le tolleranze geometriche Esempi di tolleranze geometriche Tolleranza di circolarità. L’errore di circolarità è dato dalla differenza dei raggi di due circonferenze concentriche che comprendono in contorno reale del pezzo LIUC - Ingegneria Gestionale

  22. Le tolleranze geometriche Esempi di tolleranze geometriche Tolleranza di cilindricità. L’errore di cilindricità è dato dalla differenza tra i raggi minimo e massimo del profilo esteso a tutta la zona considerata (max. 0,03 mm LIUC - Ingegneria Gestionale

  23. Le tolleranze geometriche Esempi di tolleranze geometriche Tolleranza di forma di profilo. Lo scostamento dal profilo ideale non può essere superiore a 0,12 mm sia sia in un verso che nell’altro. LIUC - Ingegneria Gestionale

  24. Le tolleranze geometriche Esempi di tolleranze geometriche Tolleranza di parallelismo. Il parallelismo degli assi dei fori da 40 e da 25 deve essere garantito entro 0,1 mm LIUC - Ingegneria Gestionale

  25. Le tolleranze geometriche Esempi di tolleranze geometriche Tolleranza di perpendicolarità. Il cilindro generato dalla rotazione dell’asse verticale ha un diametro massimo di 0,6 mm LIUC - Ingegneria Gestionale

  26. Le tolleranze geometriche Esempi di tolleranze geometriche Tolleranza di perpendicolarità. La superficie verticale può inclinarsi al massimo di 0,05 mm rispetto al piano di riferimento A. LIUC - Ingegneria Gestionale

  27. Le tolleranze geometriche Esempi di tolleranze geometriche Tolleranza di inclinazione. Rispetto all’inclinazione di 60°, l’asse può scostarsi al massimo di 0,08 mm LIUC - Ingegneria Gestionale

  28. Le tolleranze geometriche Esempi di tolleranze geometriche Tolleranza di localizzazione. La posizione degli assi dei fori è tollerata rispetto ad altri elementi di riferimento LIUC - Ingegneria Gestionale

  29. Le tolleranze geometriche Esempi di tolleranze geometriche Tolleranza di concentricità. Le due superfici cilindriche potrebbero non essere concentriche al massimo per 0,03 mm LIUC - Ingegneria Gestionale

  30. Le tolleranze geometriche Esempi di tolleranze geometriche Tolleranza di simmetria. La simmetria potrebbe non essere rispettata in diversi modi ma sempre nel limite di 0,08 mm LIUC - Ingegneria Gestionale

  31. Le tolleranze geometriche Esempi di tolleranze geometriche Tolleranza di oscillazione radiale. Il controllo dell’oscillazione viene fatto con il pezzo in rotazione. Non può essere superiore a 0,03 mm LIUC - Ingegneria Gestionale

  32. Le tolleranze geometriche Esempi di tolleranze geometriche Tolleranza di oscillazione assiale. Il controllo dell’oscillazione viene fatto con il pezzo in rotazione. Non può essere superiore a 0,1 mm LIUC - Ingegneria Gestionale

  33. La tolleranza di rugosità superficiale Qualsiasi tipo di lavorazione genera sempre sulle superfici lavorate irregolarità microgeometriche più o meno evidenti. Questa caratteristica assunta dalle superfici è detta rugosità superficiale. Spesso, per garantire la funzionalità delle parti, la rugosità deve essere contenuta entro certi limiti; da qui l’esigenza di assegnare anche tolleranze di rugosità superficiale LIUC - Ingegneria Gestionale

  34. La tolleranza di rugosità superficiale Per assegnare le tolleranze di rugosità superficiale occorre innanzitutto definire come misurarla. Quindi, per convenzione, si ipotizza di sezionare la superficie con un piano ad essa ortogonale. La linea di intersezione è inteso quale profilo reale della superficie. LIUC - Ingegneria Gestionale

  35. La tolleranza di rugosità superficiale La misurazione della rugosità si effettua con uno strumento, il rugosimetro, una specie di tastatore. Scorrendo per un tratto definito (lunghezza bi base L) sulla superficie, il rugosimetro rileva le irregolarità e costruisce una linea media del profilo (xm) minimizzando la somma dei quadrati delle distanze effettive (y) dei punti del profilo rispetto alla linea stessa LIUC - Ingegneria Gestionale

  36. La tolleranza di rugosità superficiale La rugosità Ra della superficie è definita come valore medio delle distanze ( y1, y2,…., yn) del profilo rispetto alla linea media misurate in μm. LIUC - Ingegneria Gestionale

  37. La tolleranza di rugosità superficiale Per effettuare una misurazione corretta, per escludere per esempio l’effetto di irregolarità accentuate ma sporadiche, la rugosità Ra viene determinata sulla base di un certo numero di misurazioni in modo che la lunghezza di valutazione sia pari di norma a cinque volte la lunghezza base. Da evidenziare che la lunghezza base è funzione della tolleranza di rugosità ammessa; più la tolleranza è ristretta, più corta è la lunghezza base. LIUC - Ingegneria Gestionale

  38. La tolleranza di rugosità superficiale Le indicazioni sui disegni LIUC - Ingegneria Gestionale

  39. La tolleranza di rugosità superficiale Relazione tra tolleranza dimensionale e rugosità N.B.: la tolleranza dimensionale impone la rugosità massima. Non è vero il contrario LIUC - Ingegneria Gestionale

  40. La tolleranza di rugosità superficiale Relazione tra processo produttivo e rugosità. LIUC - Ingegneria Gestionale

  41. La tolleranza di rugosità superficiale Rugosità richiesta in funzione delle applicazioni. LIUC - Ingegneria Gestionale

More Related