slide1 n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Type 1 AGN SEDs in the COSMOS A Single Form, Mixing Diagram, and Outliers PowerPoint Presentation
Download Presentation
Type 1 AGN SEDs in the COSMOS A Single Form, Mixing Diagram, and Outliers

Loading in 2 Seconds...

play fullscreen
1 / 93

Type 1 AGN SEDs in the COSMOS A Single Form, Mixing Diagram, and Outliers - PowerPoint PPT Presentation


  • 105 Views
  • Uploaded on

Type 1 AGN SEDs in the COSMOS A Single Form, Mixing Diagram, and Outliers . Heng Hao (SISSA) Martin Elvis (CFA) and COSMOS Team INAF-OABO Seminar 2012-10-25 . 10%. 90%. Outline. Introduction: Definition and Important Questions XMM-COSMOS SEDs

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

Type 1 AGN SEDs in the COSMOS A Single Form, Mixing Diagram, and Outliers


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
    Presentation Transcript
    1. Type 1 AGN SEDs in the COSMOS A Single Form, Mixing Diagram, and Outliers Heng Hao (SISSA) Martin Elvis (CFA) and COSMOS Team INAF-OABO Seminar 2012-10-25 10% 90%

    2. Outline • Introduction: Definition and Important Questions • XMM-COSMOS SEDs • Mixing Diagram: HR Diagram in AGN Evolution? • Evolution Track • Inferred Host Galaxy Fraction • Inferred Reddening E(B-V) • Outliers: Hot-Dust-Poor Quasars & Others • Summary

    3. 49 yrs ago, in 1963First Quasar: 3C 273 by Maarten Schmidt 3C 273: z = 0.1583 Furthest quasar now: z = 7

    4. Unified Model Two types of AGNs According to Optical Emission Lines: 1.Type 1 AGNs: broad emission lines generally unobscured by gas and dust 2.Type 2 AGNs: narrow emission lines only generally heavily abscured According to power of nuclei: Quasars Seyferts 1995 SED Ref for other type of AGNs: LLAGN: Ho 1999 Red quasar: Young+2008 3) …

    5. IRAC u B g V r i z K 1 2 3 4 IB427 IB565 IB505 IB574 IB709 NB711 NB816 IB827 24um Wavelength Ordered Strips Wavelength Ordered Strips from Peter Capak

    6. Wavelength Ordered Strips IRAC u B g V r i z K 1 2 3 4 IB427 IB565 IB505 IB574 IB709 NB711 NB816 IB827 24um Wavelength Ordered Strips from Peter Capak

    7. z K NB816 IB827 IRAC1 IRAC2 IRAC3 IRAC4 IRAC u B g V r i z K 1 2 3 4 IB427 IB565 IB505 IB574 IB709 NB711 NB816 IB827 24um Wavelength Ordered Strips Wavelength Ordered Strips from Peter Capak

    8. (Elvis, Hao + 2012) SED Example K H J GALEX MIPS IRAC Subaru SDSSCFHT Elvis 94 Galaxy XMM

    9. Constant power per decade Radio FIR Opt-UV EUV X-ray NIR 1 dex Quasar Spectral Energy Distribution Elvis et al., 1994, ApJS, 95, 1

    10. corona-Comptonized hot dust from ‘torus’ accretion disk jet synchrotron Mechanism Opt-UV Radio FIR EUV X-ray NIR Quasar Spectral Energy Distribution Compton Hump (~10-30keV) Big Blue Bump (0.1~1μm) Radio-loud mm break (~100μm) 1μm inflection Soft Excess (~0.1 keV) Radio-quiet Lν = ν-3 (dust) Elvis et al., 1994, ApJS, 95, 1

    11. corona-Comptonized hot dust from ‘torus’ accretion disk jet synchrotron Mechanism Radio FIR Opt-UV EUV X-ray NIR Quasar Spectral Energy Distribution Compton Hump (~10-30keV) Radio-loud Big Blue Bump (0.1~1μm) mm break (~100μm) 1μm inflection Soft Excess (~0.1 keV) Radio-quiet Lν = ν-3 (dust) Review by Harris & Krawczynski (2006) Elvis et al., 1994, ApJS, 95, 1

    12. Radio Loudness • Radio Loudness Definitions: • RL =log(f5GHz/fB)>1 • q24= log(f24μm/f1.4GHz)<0 • R*uv= log(f5GHz/f2500Å)>1 • Ri=log(f1.4GHz/fi)>1 • logP5GHz(W/Hz/Sr)>23.7 • RX=log(νLν(5GHz)/LX)>-3 • where LX is the luminosity in 2-10 keV • *Affected by reddening • Radio Loudness Distr.: bimodal (e.g. Kellermann +1989, Miller+1990) continuous (e.g. Cirasuolo +2003) • Typical RL Fraction ~10% (e.g. Kellermann +1989; Urry & Padovani 1995) • RL Fraction evolve with z or i magnitude (Balokovic + 2012) • RL(L/LEdd)-1 for L/LEdd>0.001(Sikora + 2007)

    13. Small Radio Loud Fraction (Hao + 2012 in prep) RQ RL • COSMOS RL fraction~4%, 9% (Ri) • 5/413 RL in common for all definitions • 8/413 RL in common for two definitions • COSMOS sources are at the high accretion tail of the Sikora + 2007 plot show no similar trend.

    14. corona-Comptonized hot dust from ‘torus’ accretion disk jet synchrotron Mechanism Radio FIR Opt-UV EUV X-ray NIR Quasar Spectral Energy Distribution Lack Observation Data; ALMA✔ Grey Body: Fν ∝ν3+β/(ehν/kT − 1), where β~1-2 (Silva + 1998, Dunne & Eales 2001) Compton Hump (~10-30keV) Radio-loud Big Blue Bump (0.1~1μm) mm break (~100μm) 1μm inflection Soft Excess (~0.1 keV) Radio-quiet Lν = ν3(dust) Elvis et al., 1994, ApJS, 95, 1

    15. corona-Comptonized hot dust from ‘torus’ accretion disk jet synchrotron Mechanism Radio FIR Opt-UV EUV X-ray NIR Quasar Spectral Energy Distribution Observation: Spitzer, Herschel, WISE Torus model: Smooth (eg. Fritz + 2006) Clumpy (eg. Nenkova + 2008) 2-phase (eg. Stalevski + 2012) Compton Hump (~10-30keV) Radio-loud Big Blue Bump (0.1~1μm) mm break (~100μm) 1μm inflection Soft Excess (~0.1 keV) Radio-quiet Lν = ν3(dust) Elvis et al., 1994, ApJS, 95, 1

    16. Dust Property • Dust extinct λ~2πa most • AGN extinction curve SMC like (Czerny + 2004; Gaskell + 2004; Crenshaw+2001, 2002—Seyferts; Hopkins +2004 —SDSS+2MASS; ) • Maximum dust temperature: • 1400K - 1900K • (eg. Laor & Drain 1993) • Inner radius of dust sublimation: • 0.01 - 0.1pc (10~100 light days) • (Suganuma+ 2006) Reddening of E94: E(B-V)=0~1

    17. corona-Comptonized hot dust from ‘torus’ accretion disk jet synchrotron Mechanism Radio FIR Opt-UV EUV X-ray NIR Quasar Spectral Energy Distribution BBB comes from Accretion Disk (Shields 1978) Simple α disk fits well Fν∝ν⅓ (Frank+2002) Compton Hump (~10-30keV) Radio-loud Big Blue Bump (0.1~1μm) mm break (~100μm) 1μm inflection Soft Excess (~0.1 keV) Radio-quiet Lν = ν3(dust) Elvis et al., 1994, ApJS, 95, 1

    18. corona-Comptonized hot dust from ‘torus’ accretion disk jet synchrotron Mechanism Radio FIR Opt-UV EUV X-ray NIR Quasar Spectral Energy Distribution Milky Way Opaque Define αox= -log[L2keV/L2500Å]/2.605 Compton Hump (~10-30keV) Radio-loud Big Blue Bump (0.1~1μm) mm break (~100μm) 1μm inflection Soft Excess (~0.1 keV) Radio-quiet Lν = ν3(dust) Elvis et al., 1994, ApJS, 95, 1

    19. corona-Comptonized hot dust from ‘torus’ accretion disk jet synchrotron Mechanism Radio FIR Opt-UV EUV X-ray NIR Quasar Spectral Energy Distribution Compton Hump (~10-30keV) Radio-loud Big Blue Bump (0.1~1μm) mm break (~100μm) 1μm inflection Soft Excess (~0.1 keV) Radio-quiet Lν = ν3(dust) Elvis et al., 1994, ApJS, 95, 1

    20. Veritas • Needs many telescopes • Several Quasar Properties Affect: • (Variability, BEL, …) • Reddening • Host Galaxy Contamination Fermi Chandra Quasar Continuum is Hard to Study Hubble Spitzer SMA VLA

    21. Why SED is important? Int. 1) SED-----> Total Quasar Power (Lbol)kCorrection Transfer Lν to Lbol  Accretion Rate Accretion History of the Universe 2) SED ----- AGN Structure --- Origin of Continuum 3) SMBH and Galaxy Co-evolution / Black Hole Growth 4) …

    22. Elvis 94 RQRL AGN Selection Selected in certain band(s): a) Radio Luminosity (RL is rare, biased towards RL) b) Near Infrared (Lacy / Stern Wedge, obs frame, missing) c) Optical color (e.g. U-B, biased toward blue quasar) d) X-ray Luminosity (most complete) 2) Emission Lines (e.g. BPT Diagram) 16 SWIRE Galaxy Template (Polletta+2007) normalized at UKIDSS L* (Cirasuolo + 2007) Note: SED Fitting usually use Bruzual & Charlot (2003) Gal SEDs (no dust feature)

    23. Outline • Introduction: Definitionand Important Questions • XMM-COSMOS SEDs • Mixing Diagram: HR Diagram in AGN Evolution? • Evolution Track • Inferred Host Galaxy Fraction • Inferred Reddening E(B-V) • Outliers: Hot-Dust-Poor Quasars & Others • Summary

    24. Most studies use only mean SED & bolometric corrections • Yet SED spread is significant: ~1dex in UV, FIR • No theory • No correlations • Small sample: 29 radio-quiet, 18 radio-loud • Low z: 0.05 - 0.9 • Low S/N: in X-ray, UV, FIR • Biased: Blue Quasar • (Elvis et al. 1994) Pre-COSMOS SED - Elvis 94 1 dex 1 dex

    25. SDSS-selected (optical selected) • Photometry coverage: • 5 bands in optical, • limited VLA data (30/259) • limited ROSAT data (28/259) • limited GALEX data • (FUV 55/259; NUV 88/259) • 87 quasars fainter than the SDSS spectroscopic magnitude limit • “Gap Repair” – heavily depend on the Elvis 1994 SED • (Richards et al. 2006) Pre-COSMOS SED - Richards 06

    26. Expect SED differences: 1. The Galaxy/SMBH Merger Cycle QUASAR phase High L/Ledd 2 accretion modes  2 SEDs Star formation rate SMBH luminosity Seyfert phaseLow L/Ledd Time from Merger (Gyr) Hopkins et al. 2008 ApJS, 175, 356

    27. Expect SED differences: 2. αox Depend on Luminosity • αox is anticorrelated with LUV at ~4σ. • (αox= -log[L2keV/L2500Å]/2.605) • No significant correlation between αox and redshift • Vignali, Brandt, & Schneider (2003) • (see also, Steffen+2006, Just+ 2007, • Young+2010, Lusso+2010)

    28. Expect SED differences: 3. M-σ Evolution __ Local spheroid  direction of evolution in 300Myr • Merloni +(2010) • Δlog(MBH/M*)= • (0.68±0.12)log(1+z) • Similar Results, e.g. • Peng+2006 • Schields+2006 • Ho+2007 1<z<2.2

    29. Expect SED differences: 4. Number Density Evolution Elvis 94 COSMOS 80% Quasar Silverman et al. 2005

    30. Quasar Spectral Energy Distribution corona-Comptonized hot dust from ‘torus’ accretion disk jet synchrotron Mechanism Radio FIR Opt-UV EUV X-ray NIR Compton Hump (~10-30keV) Is Elvis94 SED correct? - at ALL 6 decades of L? - at ALL z? 13 Gyr - at ALL L/LEdd? Radio-loud Big Blue Bump (0.1~1μm) mm break (~100μm) 1μm inflection Soft Excess (~0.1 keV) Radio-quiet Lν = ν-3 (dust) Elvis et al., 1994, ApJS, 95, 1

    31. Outline • Introduction: Definition and Important Questions • XMM-COSMOS SEDs • Mixing Diagram: HR Diagram in AGN Evolution? • Evolution Track • Inferred Host Galaxy Fraction • Inferred Reddening E(B-V) • Outliers: Hot-Dust-Poor Quasars & Others • Summary

    32. References • Hao + 2012a, MNRAS submitted, arXiv:1210.3033 • Hao + 2012b, MNRAS submitted, arXiv:1210.3044 • Elvis, Hao + 2012, ApJ, 759, 6 • Hao + 2011, ApJ, 733, 108 • Hao + 2010, ApJL, 724, 59

    33. COSMOS Type 1 AGN Sample Elvis 94 Richards 06 XMM-COSMOS K H J GALEX MIPS IRAC Subaru SDSSCFHT Elvis 94 Galaxy XMM

    34. (Elvis, Hao + 2012) Mean SED Elvis 94 • Galactic Extinction Correction • Variability Restriction • Broad Emission Line Correction • Host Galaxy Correction Before Any Correction XMM-COSMOS Mean SED

    35. (Elvis, Hao + 2012) Mean SED Elvis 94 Before Any Correction After First Corrections * XMM-COSMOS Mean SED Galaxy normalized at UKIDSS L* (Cirasuolo + 2007) OPT-UV *Galactic Extinction Variability Restriction Em. Line Correction Luo+2010

    36. (Elvis, Hao + 2012) Host Galaxy Correction Two Host Galaxy Contamination Estimation Methods: Hubble Imaging (ACS 814W) : only for z<1(Cisternas+2011) Mbulge vs MBH relationship (Marconi & Hunt 2003): needs MBH (206/413) logLJ,gal = 0.877 log Lbol − 0.877 log λE-1.23log(1+z)+ 3.545 XMM

    37. (Elvis, Hao + 2012) Mean SED With Host Correction Elvis+1994 Richards+2006 Hopkins+2007 Shang+2011 Elvis, Hao+2012 XMM-COSMOS Mean SED (203/413)

    38. z, Lbol, logMBH and logλEParameter Space z, Lbol, log(MBH/M), logλE=log(Lbol/LEdd) Radio Loud Host Corrected 203 Quasars

    39. Similarity of Mean SED in logLbol bins (Hao + 2012a) logLbol (46.1, 47.3] Elvis 94 • (45.7 46.1] Mean SED (45.4 45.7] (44.3 45.4] Elliptical

    40. Mean SED in z, logLbol, logMBH, logλE bins (norm) z logLbol 1.5 2 logMBH logλE 1.5 1.5 (Hao + 2012a)

    41. SED Dispersion in z, Lbol, MBH, λE bins (norm) z logLbol E94 Dispersion logMBH logλE (Hao + 2012a)

    42. The Luminosity Dependence at Fixed z (Hao + 2012a) The SED shape has no obvious dependence on bolometric luminosity at similar redshifts.

    43. The Redshift Dependence at Fixed Lbol (Hao + 2012a) The SED shape has no obvious dependence on redshift at similar bolometric luminosity.

    44. SED Partial Dependence (Hao + 2012a)

    45. Quasar Growth Physics invariant with z,Lbol, MBH, L/LEdd • z~0.3  secular growth mode z~2  merger dominated epoch has the same SED as Intrinsic Quasar SED Exists Gross quasar structure within the torus does not change; But the M-σ is evolving,feeding must be changing.

    46. Outline • Introduction: Definition and Important Questions • XMM-COSMOS SEDs • Mixing Diagram: HR Diagram in AGN Evolution? • Evolution Track • Inferred Host Galaxy Fraction • Inferred Reddening E(B-V) • Outliers: Hot-Dust-Poor Quasars & Others • Summary

    47. Elvis 94 RQRL Ell2 Ell5 Ell13 S0 Sa Sb Sc Sd Sdm Spi4 NGC6090 M82 Arp220 IRAS 20551-4250 IRAS 22491-1808 NGC6240 Quasar and Galaxy SEDs 16 SWIRE Galaxy (Polletta+2007) norm. at UKIDSS L* in K band (Cirasuolo + 2007)

    48. Disentangling Quasar and Host (Hao + 2012b) αNIR αOPT Hot Dust Accretion Disk 1-3μm 0.3-1μm XMM

    49. Host Dominated Quasar-Host-Reddening Mixing Diagram (Hao + 2012b) ??? Host Dominated AGN Dominated Reddening Dominated E(B-V) AGN Dominated Reddening Dominated

    50. (Hao + 2012b) COSMOS AGN on Mixing Diagram E94 mean SED works in 90% of COSMOS Quasars (Hao et al. 2012a) Consistent with mean E94+Host+Reddening