slide1 l.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Haemodynamic Monitoring PowerPoint Presentation
Download Presentation
Haemodynamic Monitoring

Loading in 2 Seconds...

play fullscreen
1 / 51

Haemodynamic Monitoring - PowerPoint PPT Presentation


  • 421 Views
  • Uploaded on

Haemodynamic Monitoring. Theory and Practice. Haemodynamic Monitoring. Physiological Background Monitoring Optimising the Cardiac Output Measuring Preload Introduction to PiCCO Technology Practical Approach Fields of Application Limitations. Haemodynamic Monitoring.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Haemodynamic Monitoring' - vilmos


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
slide1

Haemodynamic Monitoring

Theory and Practice

slide2

Haemodynamic Monitoring

Physiological Background

Monitoring

Optimising the Cardiac Output

Measuring Preload

Introduction to PiCCO Technology

Practical Approach

Fields of Application

Limitations

slide3

Haemodynamic Monitoring

E. Introduction to PiCCO Technology

  • Principles of function
  • Thermodilution
  • Pulse contour analysis
  • Contractility parameters
  • Afterload parameters
  • Extravascular lung water
  • Pulmonary permeability
slide4

Introduction to the PiCCO-Technology

Parameters for guiding volume therapy

Contractility

Volumetric preload

  • static
  • - dynamic

Differentiated Volume Management

CO

EVLW

PiCCO Technology

slide5

Introduction to the PiCCO-Technology – Function

Principles of Measurement

PiCCO Technology is a combination of transpulmonary thermodilution and pulse contour analysis

CVC

Lungs

Pulmonary Circulation

central venous bolus injection

PULSIOCATH arterial thermodilution catheter

Right Heart

Left Heart

PULSIOCATH

PULSIOCATH

Body Circulation

slide6

EVLW

RA

RV

PBV

LA

LV

EVLW

Introduction to the PiCCO-Technology – Function

Principles of Measurement

After central venous injection the cold bolus sequentially passes through the various intrathoracic compartments

Bolus injection

concentration changes over time

(Thermodilution curve)

Lungs

Right heart

Left heart

The temperature change over time is registered by a sensor at the tip of the arterial catheter

slide7

EVLW

RA

RV

PBV

LA

LV

EVLW

Introduction to the PiCCO-Technology – Function

Intrathoracic Compartments (mixing chambers)

Intrathoracic Thermal Volume (ITTV)

Pulmonary Thermal Volume (PTV)

Largest single mixing chamber

Total of mixing chambers

slide8

Haemodynamic Monitoring

E. Introduction to PiCCO Technology

  • Principles of function
  • Thermodilution
  • Pulse contour analysis
  • Contractility parameters
  • Afterload parameters
  • Extravascular Lung Water
  • Pulmonary Permeability
slide9

Introduction to the PiCCO-Technology – Thermodilution

Calculation of the Cardiac Output

The CO is calculated by analysis of the thermodilution curve using the modified Stewart-Hamilton algorithm

Tb

Injection

t

(Tb - Ti) x Vi xK

COTD a

=

Tbx dt

D

Tb = Blood temperature

Ti = Injectate temperature

Vi = Injectate volume

∫ ∆ Tb . dt = Area under the thermodilution curve

K = Correction constant, made up of specific weight and specific heat of blood and injectate

slide10

Introduction to the PiCCO-Technology – Thermodilution

Thermodilution curves

The area under the thermodilution curve is inversely proportional to the CO.

Temperature

36,5

Normal CO: 5.5l/min

37

Temperature

Time

36,5

low CO: 1.9l/min

37

Temperature

Time

36,5

High CO: 19l/min

37

10

5

Time

slide11

Introduction to the PiCCO –Technology – Thermodilution

Transpulmonary vs. Pulmonary Artery Thermodilution

Transpulmonary TD (PiCCO)

Pulmonary Artery TD (PAC)

Aorta

PA

Pulmonary Circulation

Lungs

LA

central venous bolus injection

RA

LV

RV

PULSIOCATH arterial thermo-dilution catheter

Right Heart

Left heart

Body Circulation

In both procedures only part of the injected indicator passes the thermistor.

Nonetheless the determination of CO is correct, as it is not the amount of the detected indicator but the difference in temperature over time that is relevant!

slide12

Introduction to the PiCCO –Technology – Thermodilution

Validation of the Transpulmonary Thermodilution

n (Pts / Measurements)

r

Comparison with Pulmonary Artery Thermodilution

bias ±SD(l/min)

Friedman Z et al., Eur J Anaest, 2002

17/102

-0,04 ± 0,41

0,95

Della Rocca G et al., Eur J Anaest 14, 2002

60/180

0,13 ± 0,52

0,93

Holm C et al., Burns 27, 2001

23/218

0,32 ± 0,29

0.98

Bindels AJGH et al., Crit Care 4, 2000

45/283

0,49 ± 0,45

0,95

Sakka SG et al., Intensive Care Med 25, 1999

37/449

0,68 ± 0,62

0,97

Gödje O et al., Chest 113 (4), 1998

30/150

0,16 ± 0,31

0,96

McLuckie A. et a., Acta Paediatr 85, 1996

9/27

0,19 ± 0,21

- / -

Comparison with the Fick Method

Pauli C. et al., Intensive Care Med 28, 2002

18/54

0,03 ± 0,17

0,98

Tibby S. et al., Intensive Care Med 23, 1997

24/120

0,03 ± 0,24

0,99

slide13

Introduction to the PiCCO-Technology – Thermodilution

Extended analysis of the thermodilution curve

From the characteristics of the thermodilution curve it is possible to determine certain time parameters

Tb

Injection

Recirculation

In Tb

e-1

MTt

DSt

t

MTt: Mean Transit time

the mean time required for the indicator to reach the detection point

DSt: Down Slope time

the exponential downslope time of the thermodilution curve

Tb = blood temperature; lnTb = logarithmic blood temperature; t = time

slide14

Introduction to the PiCCO-Technology – Thermodilution

Calculation of ITTV and PTV

By using the time parameters from the thermodilution curve and the CO ITTV and PTV can be calculated

Tb

Injection

Recirculation

In Tb

e-1

MTt

DSt

t

Pulmonary Thermal Volume

PTV = Dst x CO

Intrathoracic Thermal Volume

ITTV = MTt x CO

slide15

EVLW

RA

RV

PBV

LA

LV

EVLW

Einführung in die PiCCO-Technologie – Thermodilution

Calculation of ITTV and PTV

Intrathoracic Thermal Volume (ITTV)

Pulmonary Thermal Volume (PTV)

PTV = Dst x CO

ITTV = MTt x CO

slide16

EVLW

RA

RV

PBV

LA

LV

EVLW

Introduction to the PiCCO –Technology – Thermodilution

Volumetric preload parameters – GEDV

Global End-diastolic Volume (GEDV)

ITTV

PTV

GEDV

GEDV is the difference between intrathoracic and pulmonary thermal volumes

slide17

EVLW

RA

RV

PBV

LA

LV

EVLW

Introduction to the PiCCO –Technology – Thermodilution

Volumetric preload parameters – ITBV

Intrathoracic Blood Volume (ITBV)

GEDV

PBV

ITBV

ITBV is the total of the Global End-Diastolic Volume and the blood volume in the pulmonary vessels (PBV)

slide18

3000

2000

1000

0

0

1000

2000

3000

Introduction to the PiCCO-Technology – Thermodilution

Volumetric preload parameters – ITBV

ITBV is calculated from the GEDV by the PiCCO Technology

Intrathoracic Blood Volume (ITBV)

ITBVTD (ml)

ITBV = 1.25 * GEDV – 28.4 [ml]

GEDV(ml)

GEDV vs. ITBV in 57 Intensive Care Patients

Sakka et al, Intensive Care Med 26: 180-187, 2000

slide19

Introduction to the PiCCO-Technology

Summary and Key Points - Thermodilution

  • PiCCO Technology is a less invasive method for monitoring the volume status and cardiovascular function.
  • Transpulmonary thermodilution allows calculation of various volumetric parameters.
  • The CO is calculated from the shape of the thermodilution curve.
  • The volumetric parameters of cardiac preload can be calculated through advanced analysis of the thermodilution curve.
  • For the thermodilution measurement only a fraction of the total injected indicator needs to pass the detection site, as it is only the change in temperature over time that is relevant.
slide20

Haemodynamic Monitoring

E. Introduction to PiCCO Technology

  • Principles of function
  • Thermodilution
  • Pulse contour analysis
  • Contractility parameters
  • Afterload parameters
  • Extravascular Lung Water
  • Pulmonary Permeability
slide21

Introduction to the PiCCO-Technology – Pulse contour analysis

Calibration of the Pulse Contour Analysis

The pulse contour analysis is calibrated through the transpulmonary thermodilution and is a beat to beat real time analysis of the arterial pressure curve

Transpulmonary Thermodilution

Pulse Contour Analysis

Injection

COTPD

= SVTD

HR

T = blood temperature

t = time

P = blood pressure

slide22

Patient- specific calibration factor (determined by thermodilution)

Area under the pressure curve

Aortic compliance

Shape of the pressure curve

Introduction to the PiCCO-Technology – Pulse contour analysis

Parameters of Pulse Contour Analysis

Cardiac Output

P(t)

dP

(

PCCO = cal • HR •

+ C(p) •

)

dt

SVR

dt

Systole

Heart rate

slide23

Introduction to the PiCCO-Technology – Pulse contour analysis

Validation of Pulse Contour Analysis

Comparison with pulmonary artery thermodilution

r

n (Pts / Measurements)

bias ±SD (l/min)

Mielcket al., J Cardiothorac Vasc Anesth 17 (2), 2003

22 / 96

-0,40 ± 1,3

- / -

Rauch Het al., Acta Anaesth Scand 46, 2002

25 / 380

0,14 ± 0,58

- / -

Felbinger TWet al., J Clin Anesth 46, 2002

20 / 360

-0,14 ± 0,33

0,93

Della Rocca Get al., Br J Anaesth 88 (3), 2002

62 / 186

-0,02 ± 0,74

0,94

Gödje Oet al., Crit Care Med 30 (1), 2002

24 / 517

-0,2 ± 1,15

0,88

Zöllner Cet al., J Cardiothorac Vasc Anesth 14 (2), 2000

19 / 76

0,31 ± 1,25

0,88

Buhre Wet al., J Cardiothorac Vasc Anesth 13 (4), 1999

12 / 36

0,03 ± 0,63

0,94

slide24

SVmax

SVmin

SVmean

Introduction to the PiCCO-Technology – Pulse Contour Analysis

Parameters of Pulse Contour Analysis

Dynamic parameters of volume responsiveness – Stroke Volume Variation

SVmax – SVmin

SVV =

SVmean

The Stroke Volume Variation is the variation in stroke volume over the ventilatory cycle, measured over the previous 30 second period.

slide25

Introduction to the PiCCO-Technology – Pulse Contour Analysis

Parameters of Pulse Contour Analysis

Dynamic parameters of volume responsiveness – Pulse Pressure Variation

PPmax

PPmin

PPmean

PPmax – PPmin

PPV =

PPmean

The pulse pressure variation is the variation in pulse pressure over the ventilatory cycle, measured over the previous 30 second period.

slide26

Introduction to the PiCCO-Technology – Pulse contour analysis

Summary pulse contour analysis - CO and volume responsiveness

  • The PiCCO technology pulse contour analysis is calibrated by transpulmonary thermodilution
  • PiCCO technology analyses the arterial pressure curve beat by beat thereby providing real time parameters
  • Besides cardiac output, the dynamic parameters of volume responsiveness SVV (stroke volume variation) and PPV (pulse pressure variation) are determined continuously
slide27

Haemodynamic Monitoring

E. Introduction to PiCCO Technology

  • Principles of function
  • Thermodilution
  • Pulse contour analysis
  • Contractility parameters
  • Afterload parameters
  • Extravascular Lung Water
  • Pulmonary Permeability
slide28

Introduction to the PiCCO-Technology – Contractility parameters

Contractility

Contractility is a measure for the performance of the heart muscle

  • Contractility parameters of PiCCO technology:
  • dPmx (maximum rate of the increase in pressure)
  • GEF (Global Ejection Fraction)
  • CFI (Cardiac Function Index)

kg

slide29

Introduction to the PiCCO-Technology – Contractility parameters

Contractility parameter from the pulse contour analysis

dPmx = maximum velocity of pressure increase

The contractility parameter dPmx represents the maximum velocity of left ventricular pressure increase.

slide30

Introduction to the PiCCO-Technology – Contractility parameters

Contractility parameter from the pulse contour analysis

dPmx = maximum velocity of pressure increase

n = 220

y = -120 + (0,8* x)

r = 0,82

p < 0,001

femoral dP/max [mmHg/s]

2000

1500

1000

500

0

0

500

1000

1500

2000

LV dP/dtmax [mmHg/s]

de Hert et al., JCardioThor&VascAnes 2006

dPmx was shown to correlate well with direct measurement of velocity of left ventricular pressure increase in 70 cardiac surgery patients

slide31

Introduction to the PiCCO-Technology – Contractility parameters

Contractility parameters from the thermodilution measurement

GEF = Global Ejection Fraction

LA

4 x SV

GEF =

GEDV

RA

LV

RV

  • is calculated as 4 times the stroke volume divided by the global end-diastolic volume
  • reflects both left and right ventricular contractility
slide32

Introduction to the PiCCO-Technology – Contractility parameters

Contractility parameters from the thermodilution measurement

GEF = Global Ejection Fraction

sensitivity

1

15

18

8

12

16

10

0,8

19

5

0,6

20

D FAC, %

-20

-10

10

20

0,4

22

-5

0,2

-10

r=076, p<0,0001

n=47

0

0,2

0,4

0,6

0,8

0

-15

1 specifity

D GEF, %

Combes et al, Intensive Care Med 30, 2004

Comparison of the GEF with the gold standard TEE measured contractility in patients without right heart failure

slide33

Introduction to the PiCCO-Technology – Contractility parameters

Contractility parameters from the thermodilution measurement

CFI = Cardiac Function Index

CI

CFI =

GEDVI

  • is the CI divided by global end-diastolic volume index
  • is - similar to the GEF – a parameter of both left and right ventricular contractility
slide34

Introduction to the PiCCO-Technology – Contractility parameters

Contractility parameters from the thermodilution measurement

CFI = Cardiac Function Index

sensitivity

1

15

3

4

2

3,5

10

0,8

5

0,6

5

D FAC, %

-20

-10

10

20

0,4

-5

6

0,2

-10

r=079, p<0,0001

n=47

0

0,2

0,4

0,6

0,8

0

-15

1 specificity

D GEF, %

Combes et al, Intensive Care Med 30, 2004

CFI was compared to the gold standard TEE measured contractility in patients without right heart failure

slide35

Haemodynamic Monitoring

E. Introduction to PiCCO technology

  • Functions
  • Thermodilution
  • Pulse contour analysis
  • Contractility parameters
  • Afterload parameters
  • Extravascular Lung Water
  • Pulmonary Permeability
slide36

Introduction to the PiCCO –Technology – Afterload parameter

Afterload parameter

SVR = Systemic Vascular Resistance

(MAP – CVP) x 80

SVR =

CO

  • is calculated as the difference between MAP and CVP divided by CO
  • as an afterload parameter it represents a further determinant of the cardiovascular situation
  • is an important parameter for controlling volume and catecholamine therapies

MAP = Mean Arterial Pressure

CVP = Central Venous Pressure

CO = Cardiac Output

80 = Factor for correction of units

slide37

Introduction to the PiCCO –Technology – Contractility and Afterload

Summary and Key Points

  • The parameter dPmx from the pulse contour analysis as a measure of the left ventricular myocardial contractility gives important information regarding cardiac function and therapy guidance
  • The contractility parameters GEF and CFI are important parameters for assessing the global systolic function and supporting the early diagnosis of myocardial insufficiency
  • The Systemic Vascular Resistance SVR calculated from blood pressure and cardiac output is a further parameter of the cardiovascular situation, and gives additional information for controlling volume and catecholamine therapies
slide38

Haemodynamic Monitoring

E. Introduction to PiCCO technology

  • Principles of function
  • Thermodilution
  • Pulse contour analysis
  • Contractility parameters
  • Afterload parameters
  • Extravascular Lung Water
  • Pulmonary Permeability
slide39

Introduction to the PiCCO –Technology – Extravascular Lung Water

Calculation of Extravascular Lung Water (EVLW)

ITTV

– ITBV

= EVLW

The Extravascular Lung Water is the difference between the intrathoracic thermal volume and the intrathoracic blood volume. It represents the amount of water in the lungs outside the blood vessels.

slide40

Introduction to the PiCCO –Technology – Extravascular Lung Water

Validation of Extravascular Lung Water

EVLW from the PiCCO technology has been shown to have a good correlation with the measurement of extravascular lung water via the gravimetry and dye dilution reference methods

Gravimetry

Dye dilution

ELWI by PiCCO

ELWIST (ml/kg)

Y = 1.03x + 2.49

40

25

20

30

n = 209

r = 0.96

15

20

10

10

5

R = 0,97

P < 0,001

0

0

0

10

20

30

0

5

10

15

20

25

ELWI by gravimetry

ELWITD (ml/kg)

Sakka et al, Intensive Care Med 26: 180-187, 2000

Katzenelson et al,Crit Care Med 32 (7), 2004

slide41

Introduction to the PiCCO –Technology – Extravascular Lung Water

EVLW as a quantifier of lung edema

High extravascular lung water is not reliably identified by blood gas analysis

ELWI (ml/kg)

30

20

10

0

0

50

150

250

350

450

550

PaO2 /FiO2

Boeck J, J Surg Res 1990; 254-265

slide42

Introduction to the PiCCO –Technology – Extravascular Lung Water

EVLW as a quantifier of lung oedema

Extravascular lung water index (ELWI) normal range:3 – 7 ml/kg

Normal range

Pulmonary oedema

ELWI = 7 ml/kg

ELWI = 19 ml/kg

ELWI = 14 ml/kg

ELWI = 8 ml/kg

slide43

Introduction to the PiCCO –Technology – Extravascular Lung Water

EVLW as a quantifier of lung oedema

Chest x ray – does not reliably quantify pulmonary oedema and is difficult to judge, particularly in critically ill patients

Dradiographic score

80

r = 0.1

p > 0.05

60

40

20

0

-15

-10

10

15

-20

DELWI

-40

-60

-80

Halperin et al, 1985, Chest 88: 649

slide44

Mortality (%)

100

n = 81

90

*p = 0.002

n = 373

80

80

70

60

70

50

60

40

50

30

40

20

30

10

0

20

0

0

4 - 6

6 - 8

8 - 10

10 - 12

12 - 16

16 - 20

> 20

ELWI (ml/kg)

Introduction to the PiCCO –Technology – Extravascular Lung Water

Relevance of EVLW Assessment

The amount of extravascular lung water is a predictor for mortality in the intensive care patient

Mortality(%)

< 7 n = 45

7 - 14 n = 174

14 - 21 n = 100

> 21 n = 54

ELWI (ml/kg)

Sturm J in: Lewis, Pfeiffer (eds): Practical Applications of Fiberoptics in Critical Care Monitoring, Springer Verlag Berlin - Heidelberg - NewYork 1990, pp 129-139

Sakka et al , Chest 2002

slide45

Introduction to the PiCCO –Technology – Extravascular Lung Water

Relevance of EVLW Assessment

Volume management guided by EVLW can significantly reduce time on ventilation and ICU length of stay in critically ill patients, when compared to PCWP oriented therapy,

Ventilation Days

Intensive Care days

* p ≤ 0,05

n = 101

* p ≤ 0,05

22 days

9 days

15 days

7 days

EVLW Group

PAC Group

EVLW Group

PAC Group

Mitchell et al, Am Rev Resp Dis 145: 990-998, 1992

slide46

Haemodynamic Monitoring

E. Introduction to PiCCO Technology

  • Principles of function
  • Thermodilution
  • Pulse contour analysis
  • Contractility parameters
  • Afterload parameters
  • Extravascular Lung Water
  • Pulmonary Permeability
slide47

Introduction to PiCCO Technology – Pulmonary Permeability

Differentiating Lung Oedema

PVPI = Pulmonary Vascular Permeability Index

EVLW

EVLW

PVPI =

PBV

PBV

  • is the ratio of Extravascular Lung Water to Pulmonary Blood Volume
  • is a measure of the permeability of the lung vessels and as such can classify the type of lung oedema (hydrostatic vs. permeability caused)
slide48

Introduction to PiCCO Technology – Pulmonary Permeability

Classification of Lung Oedema with the PVPI

Difference between the PVPI with hydrostatic and permeability lung oedema:

Lung oedema

hydrostatic

permeability

PBV

PBV

EVLW

EVLW

EVLW

EVLW

PBV

PBV

PVPI normal (1-3)

PVPI raised (>3)

slide49

Introduction to PiCCO Technology – Pulmonary Permeability

Validation of the PVPI

PVPI can differentiate between a pneumonia caused and a cardiac failure caused lung oedema.

PVPI

4

3

2

Pneumonia

Cardiac insufficiency

16 patients with congestive heart failure and acquired pneumonia. In both groups EVLW was 16 ml/kg.

Benedikz et al ESICM 2003, Abstract 60

slide50

Introduction to PiCCO Technology – Pulmonary Permeability

Clinical Relevance of the Pulmonary Vascular Permeability Index

EVLWIanswers the question:

How much water is in the lungs?

PVPIanswers the question:

Why is it there?

and can therefore give valuable aid for therapy guidance!

slide51

Introduction to PiCCO Technology – EVLW and Pulmonary Permeability

Summary and Key Points

  • EVLW as a valid measure for the extravascular water content of the lungs is the only parameter for quantifying lung oedema available at the bedside.
  • Blood gas analysis and chest x-ray do not reliably detect and measure lung edema
  • EVLW is a predictor for mortality in intensive care patients
  • The Pulmonary Vascular Permeability Index can differentiate between hydrostatic and a permeability caused lung oedema