1 / 28

Haemodynamic Monitoring

Haemodynamic Monitoring. Theory and Practice. Haemodynamic Monitoring. Physiological Background Monitoring Optimizing the Cardiac Output Measuring Preload Introduction to PiCCO Technology Practical Approach Fields of Application Limitations. Monitoring. Monitoring the Vital Parameters.

russ
Download Presentation

Haemodynamic Monitoring

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Haemodynamic Monitoring Theory and Practice

  2. Haemodynamic Monitoring Physiological Background Monitoring Optimizing the Cardiac Output Measuring Preload Introduction to PiCCO Technology Practical Approach Fields of Application Limitations

  3. Monitoring Monitoring the Vital Parameters Respiration Rate Temperature

  4. Monitoring Monitoring the Vital Parameters Respiration Rate ECG Temperature •Heart Rate •Rhythm

  5. Monitoring Monitoring the Vital Parameters Respiration Rate Blood Pressure (NiBP) Temperature • no correlation with CO • no correlation with oxygen delivery ECG

  6. Monitoring Monitoring the Vital Parameters MAP mmHg The Mean Arterial Pressure does not correlate with Oxygen Delivery! 150 120 90 60 n= 1232 DO2 ml*m-2*min-1 100 300 500 700 30 MAP: Mean Arterial Pressure, DO2: Oxygen Delivery Reinhart K in: Lewis, Pfeiffer (eds): Practical Applications of Fiberoptics in Critical Care Monitoring, Springer Verlag Berlin - Heidelberg - NewYork 1990, pp 11-23

  7. Monitoring Monitoring the Vital Parameters Respiration Rate Blood Pressure (NiBP) Temperature • No correlation with CO • No correlation with oxygen delivery • No correlation with volume status ECG

  8. Monitoring Monitoring the Vital Parameters 80% of blood volume is found in the venous blood vessels, only 20% in the arterial blood vessels!

  9. Monitoring Monitoring the Vital Parameters Respiration Rate Blood Pressure (NiBP) • • No correlation with CO • • No correlation with oxygen delivery • • No correlation with volume status • No evidence of what is the ‘right’ perfusion pressure Temperature ECG

  10. Monitoring Standard Monitoring Respiration Rate Oxygen Saturation Temperature •No information re the O2 transport capacity • No information re the O2 utilisation in the tissues ECG NIBP

  11. Monitoring Standard Monitoring Respiration Rate Temperature ECG NIBP Oxygen Saturation Urine Production Blood Circulation (clinical assessment)

  12. Monitoring Advanced Monitoring The standard parameters do not give enough information in unstable patients. What other parameters do I need?

  13. Monitoring Advanced Monitoring Invasive Blood Pressure (IBP) •Continuous blood pressure recording • Arterial blood extraction possible • Limitations as with NiBP

  14. Monitoring Advanced Monitoring Arterial BGA IBP Information re: •Pulmonary Gas exchange •Acid Base Balance No information re oxygen supply at the cellular level

  15. Monitoring Advanced Monitoring IBP Lactate Marker for global metabolic situation Significant limitations due to: •Liver metabolism •Reperfusion effects Arterial BGA

  16. Monitoring Advanced Monitoring IBP CVP • central venous blood gas analysis possible • When low: hypovolaemia probable • When high: hypovolaemia not excluded • Not a reliable parameter for volume status Arterial BGA Lactate

  17. Monitoring Advanced Monitoring IBP ScvO2 •Good correlation with SvO2 (oxygen consumption) • Surrogate parameter for oxygen extraction • Information on the oxygen consumption situation • When compared to SvO2 less invasive (no pulmonary artery catheter required) Arterial BGA Lactate CVP

  18. Monitoring Monitoring of the central venous oxygen saturation The ScvO2 correlates well with the SvO2! ScvO2 (%) SvO2 90 90 85 80 80 70 75 60 70 n = 29 r = 0.866 ScvO2 = 0.616 x SvO2 + 35.35 50 65 r = 0.945 40 60 30 30 40 50 60 70 80 90 40 50 60 70 80 90 ScvO2 SvO2 (%) Reinhart K et al: Intensive Care Med 60, 1572-1578, 2004; Ladakis C et al: Respiration 68, 279-285, 2000

  19. A low ScvO2 is a marker for increased global oxygen extraction! 7.0 6.0 7.0 4.0 3.0 r= -0.664 n= 1191 avDO2= 12.7 -0.12*ScvO2 2.0 1.0 0 ScvO2 % Monitoring Monitoring of the central venous oxygen saturation avDO2 ml/dl 30 40 50 60 70 80 90 100 avDO2: arterial-venous oxygen content difference, ScvO2: central venous oxygen saturation Reinhart K in: Lewis, Pfeiffer (eds): Practical Applications of Fiberoptics in Critical Care Monitoring, Springer Verlag Berlin - Heidelberg - NewYork 1990, pp 11-23

  20. Monitoring Monitoring of the central venous oxygen saturation avDO2 ml/dl 7.0 CO SaO2 6.0 Delivery DO2: DO2 = CO x Hb x 1.34 x SaO2 Consumption VO2: VO2 = CO x Hb x 1.34 x (SaO2 -  S(c)vO2) 7.0 Hb 4.0 Mixed / Central Venous Saturation S(c)vO2 3.0 r= -0.664 n= 1191 avDO2= 12,7 -0.12*ScvO2 2.0 1.0 0 ScvO2 % 30 40 50 60 70 80 90 100 avDO2: arterial-venous oxygen content difference, ScvO2: central venous oxygen saturation Reinhart K in: Lewis, Pfeiffer (eds): Practical Applications of Fiberoptics in Critical Care Monitoring, Springer Verlag Berlin - Heidelberg - NewYork 1990, pp 11-23

  21. Monitoring Monitoring of the central venous oxygen saturation Early goal-directed therapy Rivers E et al. New Engl J Med 2001;345:1368-77 O2- Therapy and Sedation Intubation + Ventilation Central Venous Catheter Invasive Blood Pressure Monitoring Cardiovascular Stabilisation Mortality < 8 mmHg Volume therapy CVP 8-12 mmHg < 65 mmHg Vasopressors MAP Hospital 60 days 65 mmHg < 70% Blood transfusion to Haematocrit 30% < 70% ScVO2 ScVO2 Inotropes >70%  70% yes Therapy maintenance, regular reviews no Goal achieved?

  22. Monitoring Monitoring of the ScvO2 – Clinical Relevance Significance of the ScvO2 for therapy guidance 22

  23. Monitoring Monitoring of the ScvO2 – Clinical Relevance Early monitoring of ScvO2 is crucial for fast and effective hemodynamic management! 23

  24. Monitoring Monitoring ScvO2 – therapeutic consequences in the example of sepsis Pt unstable ScvO2 < 70% Volume bolus (when absence of contraindications) ScvO2 < 70% ScvO2 > 70% or < 80% Continuous ScvO2 monitoring – CeVOX Advanced Monitoring - PiCCO Re - evaluation Volume / Catecholamine Erythrocytes 24

  25. Monitoring Monitoring ScvO2 – Limitations Tissue hypoxia despite ”normal“ or high ScvO2? SxO2 in % ? Microcirculation disturbances in SIRS / Sepsis modified from: Reinhart K in: Lewis, Pfeiffer (eds): Practical Applications of Fiberoptics in Critical Care Monitoring, Springer Verlag Berlin - Heidelberg - NewYork 1990, pp 11-23 25

  26. Monitoring Monitoring ScvO2 – therapeutic consequences in the example of sepsis Tissue hypoxia despite „normal“ or high ScvO2? ScvO2 Pt unstable ScvO2 <70% ScvO2 > 80% Volume administration (when absence of contraindications) ScvO2 >70% but < 80% ScvO2 <70% ? Re- evaluation Advanced Monitoring cont. ScvO2 monitoring Volume / Catecholamine / Erythrocytes

  27. Monitoring Monitoring ScvO2 – therapeutic consequences in the example of sepsis Tissue hypoxia despite ”normal“ or high ScvO2? Pt unstable ScvO2 > 80% Volume bolus (when absence of contraindications) ScvO2 > 80% ScvO2 <80% but > 70% Microcirculation? Organ perfusion? Re-evaluation Further information needed Macro-haemodynamics (PiCCO) Liver function (PDR – ICG) Renal function Neurological assessment 27

  28. Monitoring Summary and Key Points • Standard monitoring does not give information re the volume status or the adequacy of oxygen delivery and consumption. • The CVP is not a valid parameter to measure volume status • The measurement of central venous oxygen saturation gives important information re global oxygenation balance and oxygen extraction • Measuring the central venous oxygenation can reveal when more advanced monitoring is indicated 28

More Related