Download
examenprogramma vwo 2010 domein golven en straling subdomein radioactiviteit samenvatting n.
Skip this Video
Loading SlideShow in 5 Seconds..
Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting PowerPoint Presentation
Download Presentation
Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting

Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting

136 Views Download Presentation
Download Presentation

Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Examenprogramma VWO 2010Domein: Golven en stralingSubdomein: RadioactiviteitSamenvatting Ioniserende straling ISP

  2. Inhoud • 1 Soorten ioniserende straling • 2 Radioactief verval • 3 Effecten van ioniserende straling • 4 Kernsplijting en kernfusie • 5 Kernenergie Examenprogramma VWO 2010

  3. 1 Soorten ioniserende straling •Atoombouw • Röntgenbuis • Röntgenstraling • Kernstraling • Ioniserend vermogen • Doordringend vermogen • Bronnen • Detectie Examenprogramma VWO 2010

  4. Atoombouw •kern (protonen en neutronen) en elektronenwolk (elektronen in schillen) • atoomnummerZ: aantal protonen in de kern •massagetalA: aantal nucleonen (of kerndeeltjes: protonen en neutronen) • notatie: • isotopen: hetzelfde aantal protonen (Z) in de kern (dus: hetzelfde element X), maar verschillend aantal neutronen (N) in de kern en dus verschillend massagetal (A = Z + N) Examenprogramma VWO 2010

  5. Röntgenbuis • • door verhitting kathode K komen elektronen vrij • • elektronen worden versneld door spanning UAK • • elektronen botsen tegen anode A • • interactie met atomen van anodemateriaal geeft röntgenstraling Examenprogramma VWO 2010

  6. Röntgenstraling • • bij interactie met atomen van het anodemateriaal worden elektronen afgeremd of veranderen van richting en zenden fotonen uit – remstraling • • sommige elektronen schieten een elektron weg uit één van de binnenschillen van het atoom, waarna het gat wordt opgevuld door een elektron uit een hogere schil – karakteristieke röntgenstraling • • fotonenergie: Ef = h·f Examenprogramma VWO 2010

  7. Kernstraling • • instabiele kern verandert in een andere kern onder uitzending van α-, β- of γ-straling • • α-straling: heliumkernen ( ) • • β-straling: elektronen ( ) – ontstaat doordat een neutron in de atoomkern vervalt tot een proton en een elektron • • γ-straling: fotonen – ontstaat doordat de atoomkern vanuit een aangeslagen toestand terugvalt naar de grondtoestand Examenprogramma VWO 2010

  8. Ioniserend vermogen • • bij doordringen van straling in een stof wordt energie afgegeven aan elektronen in de buitenste schillen van de atomen • • stralingsdeeltje (α,β) of foton (röntgen,γ) stoot bij botsing een elektron uit het atoom: ionisatie Examenprogramma VWO 2010

  9. Doordringend vermogen • • α- en β-straling: dracht • •dracht R:afstand waarover het stralingsdeeltje al zijn energie heeft afgegeven aan het materiaal – hangt af van de soort straling, de energie van het stralings-deeltje en de dichtheid van het materiaal Examenprogramma VWO 2010

  10. Doordringend vermogen • • röntgen- en γ-straling: halveringsdikte • •halveringsdikte d1/2: afstand waarover een materiaal de helft van de invallende fotonen heeft geabsor-beerd – hangt af van de fotonenergie en de dichtheid van het materiaal • • de intensiteit Id van de • doorgelaten straling neemt • exponentieel af met de • dikte d van het materiaal: Examenprogramma VWO 2010

  11. Ioniserend en doordringend vermogen Examenprogramma VWO 2010

  12. Bronnen • natuurlijke stralingsbronnen: achtergrondstraling • • kosmos • • bodem, water en lucht > voedsel en bouwmaterialen • kunstmatige stralingsbronnen • • medische toepassingen: diagnose en therapie • • kernreactoren, opslagplaatsen van radioactief afval • • deeltjesversnellers • • consumentenproducten zoals rookmelders en beeld-schermen • • fall-out door nucleaire rampen en kernbomproeven Examenprogramma VWO 2010

  13. Detectie • Geiger-Müller telbuis • • gasgevulde metalen cilinder (kathode) met op de cilinderas een metalen draad (anode) • • spanning van 1 kV • • vooral gevoelig voor β- • deeltjes • • deeltje veroorzaakt ionisatie • van één of meer gasatomen • • vrijgemaakte elektronen versnellen naar anode en ioniseren daarbij meer gasatomen: er ontstaat een lawine van elektronen die een spanningspuls levert • • elektronische teller telt het aantal pulsen Examenprogramma VWO 2010

  14. Detectie • Bellenvat • • vat met doorzichtige vloeistof • • temperatuur vloeistof vlak onder kookpunt • • invallende straling zorgt voor • ionisaties • • door drukverlaging gaat de • vloeistof spontaan koken: rond • de ionen vormen zich damp- • bellen • • banen van de deeltjes zijn zichtbaar als bellenspoor • • gekromde banen onder invloed van magnetisch veld • • meestal wordt een foto van het bellenspoor gemaakt Examenprogramma VWO 2010

  15. deeltje kathode-platen anode-draden Detectie • Dradenkamer • • een rij dicht op elkaar liggende anode-draden is gespannen tussen twee kathode-platen • • invallende straling zorgt voor ionisaties • • de draden detecteren de door ionisatie vrijgekomen elektronen • • een computerprogramma • berekent het ionisatiespoor Examenprogramma VWO 2010

  16. Detectie • Dosismeter • • bevat materiaal dat de energie • van de invallende straling • absorbeert • • vroeger een fotografische film – na ontwikkelen bepaalt de zwarting de dosis • • tegenwoordig thermoluminescentie – straling brengt atomen in aangeslagen toestand, na verhitting komt energie vrij in de vorm van licht: de lichtintensiteit bepaalt de dosis. • • uitvoering als badge Examenprogramma VWO 2010

  17. 2 Radioactief verval • • Halveringstijd • • Activiteit • • Vervalvergelijking Examenprogramma VWO 2010

  18. Halveringstijd • • bij radioactief verval verandert eeninstabiele kern in een andere kern onder uitzending van α-, β- of γ-straling • • de halveringstijdt1/2 is de tijd waarin de helft van het aanwezige aantal instabiele kernen vervalt • • het aantal aanwezige instabiele kernen Nt neemt exponentieel af in de loop van de tijd t: • • vervalconstante: Examenprogramma VWO 2010

  19. Activiteit • • de activiteitA is het aantal vervallende kernen per seconde: • • eenheid: becquerel (Bq) • • de activiteit At neemt expo- • nentieel af in de loop van • de tijd t: • • vervalkromme Examenprogramma VWO 2010

  20. 4 He A X 2 Z A-4 Y Z-2 Vervalvergelijking • •α-verval: • • het α-deeltje is een heliumkern • • behoudsprincipes: • massagetal: A = (A – 4) + 4 • atoomnummer: Z = (Z – 2) + 2 Examenprogramma VWO 2010

  21. A A X Y Z Z+1 β- Vervalvergelijking • •β–-verval: • • het β–-deeltje is een elektron • • behoudsprincipes: • massagetal: A = A + 0 • atoomnummer: Z = (Z + 1) – 1 • • bij β–-verval vervalt een neutron in de kern tot een proton en een elektron: • • het elektron wordt door de kern uitgestoten Examenprogramma VWO 2010

  22. A X Z A Y Z-1 β+ Vervalvergelijking • •β+-verval: • • het β+-deeltje is een positron: het antideeltje van het elektron • • behoudsprincipes: • massagetal: A = A + 0 • atoomnummer: Z = (Z – 1) + 1 • • bij β+-verval vervalt een proton in de kern tot een neutron en een positron: • • het positron wordt door de kern uitgestoten Examenprogramma VWO 2010

  23. Am Y Z γ A Y Z Vervalvergelijking • •γ-verval: • • het γ-deeltje is een foton • • na α- of β-verval bezit de kern vaak nog teveel energie: de kern bevindt zich in een aangeslagen toestand (aangegeven door de letter m achter het massagetal) • • de kern raakt deze energie kwijt door het uitzenden van een γ-foton • • γ-straling wordt dus uitgezonden in combinatie met α- of β-straling Examenprogramma VWO 2010

  24. Vervalvergelijking • •K-vangst: • • de kern trekt een elektron uit de K-schil de kern in • • daar combineert het ‘ingevangen’ elektron met een proton tot een neutron: • • het ‘gat’ in de K-schil wordt gevuld door een elektron uit de L- of M-schil onder uitzenden van een röntgen-foton Examenprogramma VWO 2010

  25. 3 Effecten van ioniserende straling • •Bron – straling – ontvanger • • Bestraling en besmetting • • Dosis en dosisequivalent • • Beschermingsmaatregelen • • Afwegen van risico’s Examenprogramma VWO 2010

  26. besmetting bron ioniserende straling ontvanger radioactiviteit bestraling soorten straling ioniserend vermogen doordringend vermogen dosis dosisequivalent absorptie halveringsdikte radioactieve stof radioactief verval activiteit halveringstijd Bron – straling – ontvanger • schema: Examenprogramma VWO 2010

  27. bron ioniserende straling ontvanger besmetting radioactiviteit bestraling Bestraling en besmetting • • bij bestraling absorbeert een ontvanger straling ‘van buitenaf’: uitwendige bestraling • • bij besmetting heeft een ontvanger zelf radioactieve stoffen binnengekregen (op of in het lichaam) en ontvangt daardoor straling ‘van binnenuit’: inwendige bestraling Examenprogramma VWO 2010

  28. Dosis en dosisequivalent • • de dosisD is de geabsorbeerde stralingsenergie per kilogram van het absorberende materiaal: • • eenheid: gray (Gy) (1 Gy = 1J/kg) • • het dosisequivalentH is de dosis, gecorrigeerd voor het biologisch effect (of de aangerichte schade) van de verschillende soorten straling: • • eenheid: sievert (Sv) • • weegfactor: Qα = 20 en Qβ = Qγ = Qrö = 1 Examenprogramma VWO 2010

  29. Beschermingsmaatregelen • • het jaarlijkse dosisequivalent van zo’n 2 mSv als gevolg van de natuurlijke achtergrondstraling is onontkoombaar • • de ontvangen extra dosis moet zo laag mogelijk zijn en onder de dosislimiet blijven • • er zijn drie mogelijkheden om het stralingsrisico voor stralingswerkers te beperken: • • verkorten van de tijd dat de stralingswerker met de bron bezig is • •afscherming van de bron • • vergroten van de afstand tot de bron Examenprogramma VWO 2010

  30. Afwegen van risico’s • • toepassingen moeten gerechtvaardigd zijn • • de ontvangen stralingsdosis moet zo laag mogelijk zijn en onder de dosislimiet blijven • • bij medisch diagnostische stralingstoepassingen steeds nagaan of er alternatieven zijn (zoals MRI of echoscopie) • • voor medisch therapeutische stralingstoepassingen (bestraling) geldt een andere afweging: het risico van niet behandelen tegenover het risico van de stralingsdosis • •deze stralingsdosis valt niet onder de dosislimiet Examenprogramma VWO 2010

  31. 4 Kernsplijting en kernfusie • •Bindingsenergie en massadefect • • Bindingsenergie per nucleon • • Energie bij kernsplijting en kernfusie Examenprogramma VWO 2010

  32. Eb Bindingsenergie en massadefect • •de energie die nodig is voor het afbreken van de atoomkern tot ‘losse’ nucleonen (protonen en neutronen) – en dus de energie die vrijkomt bij het opbouwen van die kern uit ‘losse’ nucleonen – is de bindings-energieEb • • de totale massa van de ‘losse’ nucleonen is groter dan de massa van de kern • • het verschil in massa is het massadefectΔm • •volgens de equivalentie van massa en energie (E = m·c2) geldt: Examenprogramma VWO 2010

  33. splijting fusie Bindingsenergie per nucleon • • de bindingsenergie Eb gedeeld door het massagetal A is de bindingsenergie per nucleon: Eb/A • • de bindingsenergie per • nucleon hangt af van • het massagetal – en is • dus per element • verschillend • • bij fusie van twee lichte • kernen en bij splijting • van een zware kern komt • bindingsenergie vrij Examenprogramma VWO 2010

  34. Energie bij kernsplijting en kernfusie • de vrijkomende energie bij kernsplijting of kernfusie is gelijk aan het verschil in bindingsenergie van de kernen voor en na de reactie • de vrijkomende energie is te berekenen uit het massadefect: het verschil tussen de som van de kernmassa’s voor en na de reactie • de kernmassa m is te berekenen uit de atoommassa (gecorrigeerd voor de aanwezige elektronen) en de atomaire massa-eenheidu Examenprogramma VWO 2010

  35. 5 Kernenergie • •Kernsplijting • • Kettingreactie • • Kernreactor • • Splijtstofstaven • • Moderator • • Regelstaven • • Splijtstofcyclus • • Kernafval • • Veiligheidsaspecten • • Milieuaspecten Examenprogramma VWO 2010

  36. • bij beschieting met neutronen kan een zware atoomkern splijten • een voorbeeld is de splijting van de uraniumisotoop U-235: • bij deze splijtingsreactie is sprake van een massa-defect: er komt energie vrij in de vorm van kinetische energie van de splijtingsproducten • de splijtingsproducten zijn instabiel en vervallen onder uitzenden van α-, β- en/of γ-straling Kernsplijting Examenprogramma VWO 2010

  37. Kettingreactie • • bij de splijting van U-235 ontstaan twee of drie vrije neutronen • • deze vrije neutronen kunnen op hun beurt weer nieuwe uraniumkernen splijten: zo ontstaat een kettingreactie. Examenprogramma VWO 2010

  38. Kernreactor • • in een kernreactor is sprake van een gecontroleerde kettingreactie van kernsplijtingen om energie vrij te maken: elke kernsplijting veroorzaakt één volgende kernsplijting • • de energie wordt gebruikt om stoom te maken • • de stoom drijft een turbine/ • generator-combinatie aan • • de kerncentrale levert elek- • trische energie Examenprogramma VWO 2010

  39. Splijtstofstaven • • in de kernreactor zit de splijtstof (U-235) in splijtstof-staven • • natuurlijk uranium bestaat vooral uit U-238 en slechts voor 0,7% uit het splijtbare U-235 • • voor het kernsplijtingsproces is verrijkt uranium met 3 tot 5% U-235 nodig • • uit het U-238 in de splijtstofstaven ontstaat plutonium (Pu-239) door absorptie van neutronen: Examenprogramma VWO 2010

  40. Moderator • • voor splijting van een uraniumkern is een langzaam neutron nodig • • de neutronen die ontstaan bij splijting van een uraniumkern zijn hoog energetisch • • om deze neutronen zodanig af te remmen dat ze een nieuwe uraniumkern kunnen splijten – • en zo de kettingreactie in stand kunnen • houden – is een moderator nodig • • in een kerncentrale is de moderator • meestal water Examenprogramma VWO 2010

  41. Regelstaven • • de kettingreactie van kernsplijtingen wordt onder controle gehouden met regelstaven • • deze regelstaven bestaan uit een materiaal dat neutronen absorbeert zonder dat er verdere reacties optreden: boor of cadmium • • in een kritische reactor veroorzaakt precies één van de bij splijting vrijkomende neutronen een nieuwe splijtingsreactie • • de kernreactor levert dan een constant vermogen Examenprogramma VWO 2010

  42. kerncentrale productie splijtstofstaven uranium- verrijking opwerking splijtstofstaven uranium- winning radioactief afval Splijtstofcyclus • • schema: Examenprogramma VWO 2010

  43. Kernafval • • in een kerncentrale, maar ook in ziekenhuizen en onderzoekscentra wordt kernafval geproduceerd • • laag- en middelradioactief afval zoals kleding, papier, water- en luchtfilters wordt in Nederland boven-gronds opgeslagen bij de COVRA • • hoogradioactief kernsplijtingsafval gaat vanuit Nederland naar Frankrijk voor opwerking • • bij opwerking wordt het overgebleven uranium en het gevormde plutonium uit het kernsplijtingsafval gehaald voor hergebruik als splijtstof Examenprogramma VWO 2010

  44. Veiligheidsaspecten • • in een Nederlandse kerncentrale wordt zorgvuldig gelet op de veiligheid door: • • ontwerp van de centrale met veiligheidsomhulling • • correct onderhoud van de centrale • • regels en procedures bij het werken met de centrale • • toezicht van de overheid op naleving van de regels Examenprogramma VWO 2010

  45. Milieuaspecten • • bij normaal functioneren levert een kerncentrale een extra stralingsdosis van niet meer dan 10 μSv per jaar per persoon • • een kerncentrale van 1000 MW verbruikt per dag 3,2 kg uranium, een kolencentrale heeft voor eenzelfde energieproductie 10.600 ton steenkool nodig • • de voorraden splijtstof (uranium) en fossiele brand-stof (aardgas, aardolie en steenkool) zijn eindig • • een thermische centrale (op fossiele brandstof) draagt bij aan versterking van het broeikaseffect, een kerncentrale levert hoogradioactief kernsplijtings-afval Examenprogramma VWO 2010

  46. Informatie • • onder achtergrondinformatie op het leerlingendeel van deze website staat aanvullende informatie over onder andere de eigenschappen, de effecten en de toepassingen van ioniserende straling Examenprogramma VWO 2010