Systematics of Calappidae (Decapoda, Brachyura) - PowerPoint PPT Presentation

systematics of calappidae decapoda brachyura n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Systematics of Calappidae (Decapoda, Brachyura) PowerPoint Presentation
Download Presentation
Systematics of Calappidae (Decapoda, Brachyura)

play fullscreen
1 / 21
Systematics of Calappidae (Decapoda, Brachyura)
171 Views
Download Presentation
veata
Download Presentation

Systematics of Calappidae (Decapoda, Brachyura)

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Systematics of Calappidae (Decapoda, Brachyura) S. L. Boyce, T. Spears, & L. G. Abele Florida State University Tallahassee, FL U.S.A.

  2. Outline • The family Calappidae • Molecular phylogenetic study • Morphological phylogenetic study based on larval characters • Tests of alternative hypotheses

  3. Box or Shame-Faced Crabs

  4. Water Spout

  5. Claw

  6. The Calappidae(sensu lato) Calappinae (9 genera) Hepatinae (3 genera) Matutinae (4 genera) Orithyiinae (1 genus)

  7. Calappid Monophyly? • Guinot (1979) morphological characters • Rice (1980) larval evidence • Stevcic (1983) physiological evidence • Bellwood (1996) morphological cladistic analysis

  8. Portunids Matutinae Leucosiids Orithyiinae Dorippids Xanthids Calappinae Hepatinae Morphological Hypothesis(Bellwood, 1996) Based on 78 adult characters

  9. To further investigate calappid systematics • Molecular phylogenetic study using mt16S rDNA sequence data • Morphological phylogenetic study using larval characters • Tests of alternative hypotheses using adult morphology, larval morphology, and molecular data sets

  10. Molecular Methods • Extract genomic DNA • Amplify, purify, and sequence a 550 bp region of the mt16S rRNA gene • Align sequences, adjust by secondary structure, and remove ambiguous regions • Perform maximum-parsimony (MP) and maximum-likelihood (ML) analyses with PAUP

  11. Maximum-Parsimony Tree Calappa hepatica 98 Calappa flammea 169 p. i. characters TL= 670 steps CI= 0.503 100 58 Calappa sulcata Cryptosoma baguerri 100 52 Cryptosoma cristata Calappids Acanthocarpus alexandri 84 Mursia armata 100 Mursia cristiata 100 Platymera guadachardii Callinectes sapidus 80 Portunids Charybdis helleri 99 Portunus spinicarpus Hepatus epheliticus 100 Hepatids Hepatus pudibundus 100 Osachila kaiserae 52 Ashtoret lunaris Matutids 100 Ashtoret planipes Leucosia ocellata Leucosiids 93 Persephona mediterranea Eurytium limosum 67 Xanthids Neopanope sp. 100 Panopeus sp. Dorippid Ethusina sp. Orithyia Orityia sinica Lyreidus bairdii Raninids 89 Ranilia muricata 10 changes Bootstrap values based on 1000 reps

  12. Maximum-Likelihood Tree Calappa hepatica TVM + I +   = 0.69942 I = 0.3302 -ln L= 3669.29119 100 Calappa flammea 99 Calappa sulcata Cryptosoma baguerri Calappids 100 Cryptosoma cristata Bootstrap values based on 100 reps 81 Acanthocarpus alexandri Mursia armata 100 Mursia cristiata 98 Platymera guadachardii Callinectes sapidus 75 Charybdis helleri 99 Portunids/Dorippid Portunus spinicarpus Ethusina sp. Hepatus epheliticus Hepatids 100 Hepatus pudibundus 99 Osachila kaiserae 54 Ashtoret lunaris Matutids 100 Ashtoret planipes 55 Eurytium limosum 65 Xanthids Neopanope sp. 100 Panopeus sp. 97 Leucosia ocellata Leucosiids 97 Persephona mediterranea Orithyia Orithyia sinica Lyreidus bairdii Raninids Ranilia muricata 0.05 substitutions/site

  13. Larval Characters antennule maxilliped 1 & 2 Calappa japonica (Taishaku and Konishi, 1995) antenna maxillule maxilla abdomen & telson Appendages from Portunus pelagicus (Shinkarenko, 1979)

  14. 99 74 82 62 88 94 85 74 Maximum-Parsimony Tree 47 p. i. characters TL= 155 steps CI= 0.574 Raninid Raninoides benedicti Calappa japonica Calappids Calappa gallus Bootstrap based on 1000 reps Charybdis bimaculata Callinectes similis Portunids Portunus rubromarginatus Portunus pelagicus Hepatus epheliticus Hepatids Hepatus pudibundus Eurytium limosum Xanthids Panopeus herbstii Matutids Ashtoret lunaris Ashtoret planipes Persephona mediterranea Leucosiids Philya globosa Leucosia pubescens Dorippids Meodorippe lanata Ethusa microphthalma Orithyia Orithyia sinica 5 changes

  15. Calappidae Monophyly Calappidae MP or ML Tree vs All Other Crabs Parsimony Likelihood Data set KH SH KH Templeton Adult Morphology 0.0001* 0.0003* N/A N/A Larval Morphology 0.009-0.001* 0.01-0.02* N/A N/A mt16S rDNA 0.06-0.08 0.06-0.08 0.05* 0.049* KH = Kishino-Hasegawa Test SH = Shimodaira-Hasegawa Test * = P < 0.05

  16. Matutinae Matutinae Calappinae Leucosiids Hepatinae Portunids All Other Crabs All Other Crabs All Other Crabs Orithyia Dorippids All Other Crabs Calappinae Hepatinae All Other Crabs Calappid Sister Relationships

  17. Calappid Sister Relationships mt16S rDNA Larval Morphology Adult Morphology Hypothesis KH Test KH Test SH Test 0.16-0.29 0.07 Calappinae-Hepatinae - - Matutinae-Leucosiid 0.17 - - - - 0.18 Orithyia-Dorippid - - - - Calappinae-Portunid 0.003* - - - - Matutinae-Hepatinae 0.06 0.29-0.30 - - KH = Kishino-Hasegawa Test SH = Shimodaira-Hasegawa Test * = P < 0.05

  18. Maximum-Likelihood Tree Calappa hepatica 100 Calappa flammea 99 Calappa sulcata Cryptosoma baguerri 100 Cryptosoma cristata 81 Acanthocarpus alexandri Mursia armata 100 Mursia cristiata 98 Platymera guadachardii Callinectes sapidus 75 Charybdis helleri 99 Portunus spinicarpus Ethusina sp. Hepatus epheliticus 100 Hepatus pudibundus 99 Osachila kaiserae 54 Ashtoret lunaris 100 Ashtoret planipes 55 Eurytium limosum 65 Neopanope sp. 100 Panopeus sp. 97 Leucosia ocellata 97 Persephona mediterranea Orithyia sinica Lyreidus bairdii Ranilia muricata 0.05 substitutions/site Short basal branches In an attempt to resolve this problem I’ve sequenced 2 regions of the nuclear 28S rRNA gene: ~40 p.i. chars out of 1300 bp

  19. Conclusions • The subfamilies Calappinae, Hepatinae, and Matutinae are monophyletic • The family Calappidae is not monophyletic • Relationships among the subfamilies and potential eubrachyuran sister taxa need further investigation • New nuclear markers are needed

  20. Kasia Chodyla Congress of Graduate Students, FSU Department of Biological Sciences, FSU FSU Sequencing Facility NSF Acknowledgements For providing specimens: For providing support: • Orpha Bellwood • Savel Daniels • Won Kim • Timothy Stebbins • Regina Wetzer • Peter Wirtz • Natural History Museum of Los Angeles County • National Museum of Natural History