1 / 6

Kerfi: afturkræf (e. reversible) vinna er mesta framkvæmanleg vinna.

1a. Kerfi: afturkræf (e. reversible) vinna er mesta framkvæmanleg vinna. óafturkræf vinna (e. irreversible) er minni en afturkræf vinna. þ.e. W rev ,(kerfi) > W irrev. (kerfi) Umhverfi: Afturkræf vinna er minnsta framkvæmanleg vinna.

Download Presentation

Kerfi: afturkræf (e. reversible) vinna er mesta framkvæmanleg vinna.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 1a Kerfi: afturkræf (e. reversible) vinna er mesta framkvæmanleg vinna. óafturkræf vinna (e. irreversible) er minni en afturkræf vinna. þ.e. Wrev,(kerfi) > Wirrev.(kerfi) Umhverfi: Afturkræf vinna er minnsta framkvæmanleg vinna. óafturkræf vinna er meiri en afturkræf vinna þ.e. Wrev.(umhv.) < Wirrev. (umhv.)

  2. 1 b-c) • Ag+ + Cl- AgCl(s); DH < 0 • ii – iii) • mole AgNO3 / Ag+ = (2g/(0.5L 169.9 g mole-1)) x 10-1L= 0.00235 mole • mole HCl / Cl- = 0.20 mole L-1 x 10-2 L = 0.0020 mole • 0.002 mole AgCl are formed = n • DH = DfH(AgCl(s)) –DfH(Ag+(aq)) – DfH(Cl-(aq)) • DH = (-127.0) – (+105.90) – (-167.2) = -65.7 kJ mole-1 • q = DH x n = (-65.7) x 0.002 = -0.131 kJ • Cp = heat capacity = -q/DT = 0.131 kJ / 0.254K = 0.516 kJ K-1

  3. 2a) Efnahvarf (e. reaction): Bruni á glókosa: C6H12O6(s) + 6O2(g) 6CO2(g) + 6H2O(l) - Óreiðuaukning Fasabreyting (e. phase change): uppgufun vatns: H2O(l) H2O(g) -Óreiðuaukning

  4. 2 b-c) (sbr. fyrirlestur 20.09.05) • System / kerfi = Hg; surrounding / umhverfi = water + vessel • Final temperature (Tx) determined: • 4.18 (80+20) (tx - 20) = 0.140 200 (100 – tx) => Tx = 25.02oC => Tx = 298.17 K • i) DSHg = 0.140 x 200 x ln(298.17 / 373.15) = - 6.28 J K-1 • ii) DSu = 4.18 x (80 + 20) ln(298.17 / 293.15) = +7.10 JK-1 • iii) DStotal = -6.28 +7.10 = +0.82 JK-1

  5. CH4(g) + 2O2(g) CO2(g) + 2H2O(g); P = 1 bar • DH = (-393.5) + 2(-241.8) –(-74.85) = -802 kJ mole-1 • DS = 213.6 +2x188.7 -186.2 – 2x205 = -5.2 JK-1mole-1 • DG = DH – TDS = b + a T; b<0, a>0 • DG negative for low T / DG positive for high T • The “switch over” temperature (i.e. T for DG = 0) is • T = -DH/DS = 802 / 5.2x10-3 = 3666 K

  6. (see lecture 06.10.05) Water = w; solute = B; Mwi = molecular weight of i; • gi = mass of i; Pw = vapor pressure of solution; P0w = vapor pressure of solvent • Pw = P0w xw = P0w (1-xB) = P0w (gw/Mww)/((gw/Mww)+(gB/MwB)) => • MwB = 10 / ((100x0.025/(0.0247x18) – (100/18)) = 147 g mole-1 • NB!: xB = 1 – xw = 1 – (Pw/P0w) = 1 - (0.0247/0.0250) = 0.012 • If 50 % (unknown) dissociation (AB = A + B) => • 50 % increase in number of particles => • xB = 1.5 * xB(a) = 1.5x0.012 = 0.018 • Pw = P0w(1 - xB) = 0.0250x (1 - 0.018) = 0.02455 • Mw = 10 / ((100x0.025/(0.02455x18) – (100/18)) = 98 g mole-1 • Hence molecular mass would be underestimated.

More Related