functions n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Functions PowerPoint Presentation
Download Presentation
Functions

Loading in 2 Seconds...

play fullscreen
1 / 33

Functions - PowerPoint PPT Presentation


  • 60 Views
  • Uploaded on

Functions. CS/APMA 202 Rosen section 1.8 Aaron Bloomfield. Definition of a function. A function takes an element from a set and maps it to a UNIQUE element in another set. Function terminology. f maps R to Z. f. R. Z. Co-domain. Domain. f(4.3). 4. 4.3. Pre-image of 4.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

Functions


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
    Presentation Transcript
    1. Functions CS/APMA 202 Rosen section 1.8 Aaron Bloomfield

    2. Definition of a function • A function takes an element from a set and maps it to a UNIQUE element in another set

    3. Function terminology f maps R to Z f R Z Co-domain Domain f(4.3) 4 4.3 Pre-image of 4 Image of 4.3

    4. “a” “bb“ “cccc” “dd” “e” 1 2 3 4 5 Alice Bob Chris Dave Emma A B C D F A string length function A class grade function More functions The image of A A pre-image of 1 Domain Co-domain

    5. a e i o u 1 2 3 4 5 “a” “bb“ “cccc” “dd” “e” 1 2 3 4 5 Some function… Even more functions Range Not a valid function! Also not a valid function!

    6. Function arithmetic • Let f1(x) = 2x • Let f2(x) = x2 • f1+f2 = (f1+f2)(x) = f1(x)+f2(x) = 2x+x2 • f1*f2 = (f1*f2)(x) = f1(x)*f2(x) = 2x*x2 = 2x3

    7. a e i o 1 2 3 4 5 a e i o 1 2 3 4 5 A one-to-one function A function that is not one-to-one One-to-one functions • A function is one-to-one if each element in the co-domain has a unique pre-image

    8. a e i o 1 2 3 4 5 A one-to-one function More on one-to-one • Injective is synonymous with one-to-one • “A function is injective” • A function is an injection if it is one-to-one • Note that there can be un-used elements in the co-domain

    9. a e i o u 1 2 3 4 a e i o 1 2 3 4 5 An onto function A function that is not onto Onto functions • A function is onto if each element in the co-domain is an image of some pre-image

    10. a e i o u 1 2 3 4 An onto function More on onto • Surjective is synonymous with onto • “A function is surjective” • A function is an surjection if it is onto • Note that there can be multiply used elements in the co-domain

    11. a b c 1 2 3 4 a b c d 1 2 3 a b c d a b c d 1 2 3 4 1 2 3 4 a b c 1 2 3 4 Onto vs. one-to-one • Are the following functions onto, one-to-one, both, or neither? 1-to-1, not onto Both 1-to-1 and onto Not a valid function Onto, not 1-to-1 Neither 1-to-1 nor onto

    12. a b c d 1 2 3 4 Bijections • Consider a function that isboth one-to-one and onto: • Such a function is a one-to-one correspondence, or a bijection

    13. Identity functions • A function such that the image and the pre-image are ALWAYS equal • f(x) = 1*x • f(x) = x + 0 • The domain and the co-domain must be the same set

    14. Inverse functions Let f(x) = 2*x f R R f-1 f(4.3) 8.6 4.3 f-1(8.6) Then f-1(x) = x/2

    15. a b c 1 2 3 4 a b c d 1 2 3 More on inverse functions • Can we define the inverse of the following functions? • An inverse function can ONLY be done defined on a bijection What is f-1(2)? Not onto! What is f-1(2)? Not 1-to-1!

    16. Compositions of functions • Let (f ○ g)(x) = f(g(x)) • Let f(x) = 2x+3 Let g(x) = 3x+2 • g(1) = 5, f(5) = 13 • Thus, (f ○ g)(1) = f(g(1)) = 13

    17. Compositions of functions f ○ g A B C g f g(a) f(a) a f(g(a)) g(a) (f ○ g)(a)

    18. Compositions of functions Let f(x) = 2x+3 Let g(x) = 3x+2 f ○ g R R R g f g(1) f(5) f(g(1))=13 1 g(1)=5 (f ○ g)(1) f(g(x)) = 2(3x+2)+3 = 6x+7

    19. Compositions of functions Does f(g(x)) = g(f(x))? Let f(x) = 2x+3 Let g(x) = 3x+2 f(g(x)) = 2(3x+2)+3 = 6x+7 g(f(x)) = 3(2x+3)+2 = 6x+11 Function composition is not commutative! Not equal!

    20. Graphs of functions f(x)=3 x=1 Let f(x)=2x+1 Plot (x, f(x)) This is a plot of f(x) f(x)=5 x=2

    21. Useful functions • Floor: x means take the greatest integer less than or equal to the number • Ceiling: x means take the lowest integer greater than or equal to the number • round(x) = floor(x+0.5)

    22. Rosen, question 8 (§1.8) • Find these values • 1.1 • 1.1 • -0.1 • -0.1 • 2.99 • -2.99 • ½+½ • ½ + ½ + ½ 1 2 -1 0 3 -2 ½+1 = 3/2 = 1 0 + 1 + ½ = 3/2 = 2

    23. Ceiling and floor properties Let n be an integer (1a) x = n if and only if n ≤ x < n+1 (1b) x = n if and only if n-1 < x ≤ n (1c) x = n if and only if x-1 < n ≤ x (1d) x = n if and only if x ≤ n < x+1 (2) x-1 < x ≤ x ≤ = x < x+1 (3a) -x = - x (3b) -x = - x (4a) x+n = x+n (4b) x+n = x+n

    24. Ceiling property proof • Prove rule 4a: x+n = x+n • Where n is an integer • Will use rule 1a: x = n if and only if n ≤ x < n+1 • Direct proof! • Let m = x • Thus, m ≤ x < m+1 (by rule 1a) • Add n to both sides: m+n ≤ x+n < m+n+1 • By rule 4a, m+n = x+n • Since m = x, m+n also equals x+n • Thus, x+n = m+n = x+n

    25. Factorial • Factorial is denoted by n! • n! = n * (n-1) * (n-2) * … * 2 * 1 • Thus, 6! = 6 * 5 * 4 * 3 * 2 * 1 = 720 • Note that 0! is defined to equal 1

    26. Proving function problems • Rosen, question 32, §1.8 • Let f be a function from A to B, and let S and T be subsets of A. Show that

    27. Proving function problems • Rosen, question 32 (a): f(SUT) = f(S) U f(T) • Will show that each side is a subset of the other • Two cases! • Show that f(SUT)  f(S) U f(T) • Let b  f(SUT). Thus, b=f(a) for some aS U T • Either aS, in which case bf(S) • Or aT, in which case bf(T) • Thus, bf(S) U f(T) • Show that f(S) U f(T)  f(S U T) • Let b  f(S) U f(T) • Either b  f(S) or b  f(T) (or both!) • Thus, b = f(a) for some a  S or some a  T • In either case, b = f(a) for some a  S U T

    28. Proving function problems • Rosen, question 32 (b): f(S∩T)  f(S) ∩ f(T) • Let b  f(S∩T). Then b = f(a) for some a  S∩T • This implies that a  S and a  T • Thus, b  f(S) and b  f(T) • Therefore, b  f(S) ∩ f(T)

    29. Proving function problems • Rosen, question 62, §1.8 • Let f be an invertible function from Y to Z • Let g be an invertible function from X to Y • Show that the inverse of f○g is: • (f○g)-1 = g-1 ○ f-1

    30. Proving function problems • Rosen, question 62, §1.8 • Thus, we want to show, for all zZ and xX • The second equality is similar

    31. Quick survey • I felt I understood the material in this slide set… • Very well • With some review, I’ll be good • Not really • Not at all

    32. Quick survey • The pace of the lecture for this slide set was… • Fast • About right • A little slow • Too slow

    33. Quick survey • How interesting was the material in this slide set? Be honest! • Wow! That was SOOOOOO cool! • Somewhat interesting • Rather borting • Zzzzzzzzzzz