390 likes | 408 Views
Explore the historical journey and advancements in optical networking, from Claude Chappe's telegraph to modern GLIF technology. Learn about the transition from analogue to digital signals, fibre optic cables, optical switches, and network building blocks.
E N D
Optical NetworkingPrimer John Dyer TERENA http://www.terena.nl TF-PR, Paris, September 2006
Troy – 1200 BC TF-PR, Paris, September 2006
Troy – 1200 BC TF-PR, Paris, September 2006
Troy – 1200 BC TF-PR, Paris, September 2006
Troy – 1200 BC TF-PR, Paris, September 2006
Troy – 1200 BC Troy to Agamemnon’s palace in Mycenae, 600km TF-PR, Paris, September 2006
le télégraphe optique • First real purpose built optical communication device • L'invention de : Claude Chappe -1791 TF-PR, Paris, September 2006
National Optical Network TF-PR, Paris, September 2006
Performance • 1794 - 230 km between Paris and Lille • By 1850 network grew to 556 stations covering 5000 km • 20 to 30 seconds per symbol per station in good weather conditions: More than 1 hour the characters on this slide TF-PR, Paris, September 2006
Electric Replaces Optical • 1816 Francis Ronalds • 8 miles of Iron wires • 1855 Giovanni Caselli • telegraph line between Paris and Lyon TF-PR, Paris, September 2006
1876 - Telecommunications goes analogue TF-PR, Paris, September 2006
Analogue Signals Attenuation Output Source Noise TF-PR, Paris, September 2006
Analogue over copper • Copper wire has narrow bandwidth • Insufficient for backbones/long haul at high speed TF-PR, Paris, September 2006
Sending Digital Signals Power Volts 1 1 1 1 10mW 5 0 0 0 0 0mW 0 time time Coaxial cable TF-PR, Paris, September 2006
Digital over Analogue • 1950’s US Defence • 1958 - DARPAnet • 1962 – Bell 103 modem • 300 bits per second (about 40 characters per second) TF-PR, Paris, September 2006
The move to optical transmission • 1975 – Bell – 14 Km of waveguide in New Jersey, US • 1977 – Bell – live telephony in Chicago • 1977 – BT, UK live telephony • 1986 – Fibre link across English channel • 1988 – TAT-8 First Transatlantic Fibre • 280 Mbps and retired in 2002 (14 years) TF-PR, Paris, September 2006
Fibre Transmission TF-PR, Paris, September 2006
Fibre Optic Cables TF-PR, Paris, September 2006
Transmission • Chromatic Dispersion • Phase Dispersion • Attenuation TF-PR, Paris, September 2006
Digital can be cleanly regenerated Attenuation Output Regeneration Source Noise TF-PR, Paris, September 2006
Building Blocks TF-PR, Paris, September 2006
Building an Optical Network TF-PR, Paris, September 2006
Electrical & Optical Devices Electrical Domain Optical Domain emerging Classical Electrical Switch O-E-O Switch All Optical Switch TF-PR, Paris, September 2006
Optical Switches - MEMs TF-PR, Paris, September 2006
Electromagnetic Spectrum lambda TF-PR, Paris, September 2006
Multiple lambdas 1300nm 1600nm 850nm Don’t forget – λ’s in non-visible TF-PR, Paris, September 2006
Single Wave Length in a single fibre pair TF-PR, Paris, September 2006
Wave Division Multiplexing (WDM) in a single pair TF-PR, Paris, September 2006
Generalised IP Network TF-PR, Paris, September 2006
Backbone Core Optical TF-PR, Paris, September 2006
A Need full Internet routing B Need VPN services on/and full Internet routing C Need very fat pipes, limited multiple Virtual Organizations A B C User Classes Bandwidth consumed Number of users DSL GigE LAN Source: Cees de Laat, UvA TF-PR, Paris, September 2006
Hybrid Networking TF-PR, Paris, September 2006
Getting Access to Fibres Flexibility & control complexity • Buy or Lease a service • IP level or optical path • IRU • (Indefeasible Right of Use ) • Dig it yourself TF-PR, Paris, September 2006
GLIFGlobal Lambda Integrated Facility TF-PR, Paris, September 2006
GLIF Open Lightpath Exchanges • GLIF lambdas are interconnected through established exchange points known as GOLEs. • GOLEs are comprised of equipment capable of terminating lambdas and performing lightpath switching, allowing end-to-end connections • Open connection policy TF-PR, Paris, September 2006
Established GOLEs • CANARIE-StarLight, Chicago (CANARIE) • CANARIE-PNWGP, Seattle (CANARIE) • CERN, Switzerland (CERN) • KRLight, Seoul (KISTI) • MAN LAN, New York (Internet2, NYSERNET, Indiana Uni & IEEAF) • NetherLight, Amsterdam (SURFnet) • NorthernLight, Stockholm (NORDUnet) • Pacific Northwest GigaPoP, Seattle (Consortium of research and education orgs ) • StarLight, Chicago (UIC/EVL, NWU/iCAIR & Argonne) • T-LEX, Tokyo (WIDE) • UKLight, London (UKERNA) • UltraLight, Los Angeles (Caltech/NSF) TF-PR, Paris, September 2006
GLIF Working Groups • TERENA provides GLIF secretariat function • Governance & Growth • Chair: Kees Neggers (SURFnet) • Technical Issues • Co-Chairs: Erik-Jan Bos (SURFnet) & René Hatem (CANARIE) • Control Plane & Grid Integration Middleware • Chair: Gigi Karmous-Edwards (MCNC) • Research & Applications • Co-Chairs: Maxine Brown (UIC) & Larry Smarr (UCSD) TF-PR, Paris, September 2006
References • The Telegraph Of Claude Chappe -An Optical Telecommunication Network For The XVIIIth Century http://services3.ieee.org/organizations/history_center/cht_papers/dilhac.pdf • Data Communications: The First 2500 Years http://spinroot.com/gerard/pdf/hamburg94b.pdf • A Survey of MEMS-Enabled Optical Devices – (January 2006) http://www.iec.org/newsletter/jan06_2/broadband_1.html • Wavelength switches and the automated optical network – Status & outlook (2005) http://www.telenor.com/telektronikk/volumes/pdf/2.2005/Page_081-086.pdf • GLIF website http://www.glif.is TF-PR, Paris, September 2006
Good luck with finding your way home TF-PR, Paris, September 2006