1 / 62

Asymmetric Baylis-Hillman Reaction

Asymmetric Baylis-Hillman Reaction. Matt Bowman Blackwell Group April 24, 2003. Outline. General remarks History Utility Mechanism Improvements Asymmetric variants. General Reaction. Strengths: Complete Atom Economy Adducts are “Loaded with Functionality” Weaknesses:

urit
Download Presentation

Asymmetric Baylis-Hillman Reaction

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Asymmetric Baylis-Hillman Reaction Matt Bowman Blackwell Group April 24, 2003

  2. Outline • General remarks • History • Utility • Mechanism • Improvements • Asymmetric variants

  3. General Reaction • Strengths: • Complete Atom Economy • Adducts are “Loaded with Functionality” • Weaknesses: • Long Reaction Times • Side Reactions

  4. Early Years • 1968- Morita used Cy3P as a catalyst • “Carbinol Addition” Morita, K.; Suzuki, Z.; Hirose, H. Bull. Chem. Soc. Jpn. 1968, 41, 2815.

  5. Early Years • 1968- Morita used Cy3P as a catalyst • “Carbinol Addition” Morita, K.; Suzuki, Z.; Hirose, H. Bull. Chem. Soc. Jpn. 1968, 41, 2815.

  6. Early Years • 1968- Morita used Cy3P as a catalyst • “Carbinol Addition” 2 hours at reflux Morita, K.; Suzuki, Z.; Hirose, H. Bull. Chem. Soc. Jpn. 1968, 41, 2815.

  7. Middle Ages • 1972- A.B. Baylis and M.E.D. Hillman • Celanese Corporation 1 week room temperature Baylis, A.B.; Hillman, M.E.D. German Patent 2155113, 1972; Chem. Abstr. 1972, 77, 34174q.

  8. Renaissance • 1983-1988 • Reaction scope was explored. • Main Players: Drewes and Basavaiah • 1988- Termed “Baylis-Hillman reaction” Drewes, S.E.; Roos, G.H.P. Tetrahedron1988,44, 4653-4670.

  9. Today • 1988-Present day attention • New catalysts • Broadened scope • Asymmetric variants Basavaiah, D.; Rao, A.J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811-891.

  10. Utility • Inexpensive starting materials • Lots of functionality • Complete atom economy • Amenable to industrial scale reactions

  11. Utility: Sampatrilat • Pfizer • Inhibitor • zinc metalloprotease • neutral endopeptidadase • angiotensin converting enzyme Dunn, P.J.; Hughes, M.L.; Searle, P.M.; Wood, A.S. Org. Proc. Res. Dev. ASAP Article

  12. Utility: Sampatrilat Dunn, P.J.; Hughes, M.L.; Searle, P.M.; Wood, A.S. Org. Proc. Res. Dev. ASAP Article

  13. Utility: Sampatrilat Dunn, P.J.; Hughes, M.L.; Searle, P.M.; Wood, A.S. Org. Proc. Res. Dev. ASAP Article

  14. Utility: Natural Products

  15. Proposed Mechanism

  16. Mechanistic Studies • rate=k[Acrylonitrile][MeCHO][DABCO] • kH/kD=1.03  0.1 • Strong solvent dependence • Polar Protic Solvents Hill, J.S.; Isaacs, N.S. J. Phys. Org. Chem. 1990,40, 5611-5614.

  17. Baylis-Hillman Advances • Focus on increasing reaction rate

  18. Baylis-Hillman Advances • Focus on increasing reaction rate • Increased pKa of Lewis base Aggarwal, V.K.; Emme, I.; Fulford, S.Y. J. Org. Chem. 2003, 68, 692-700.

  19. Baylis-Hillman Advances • Focus on increasing reaction rate • Increased pKa of Lewis base • Lewis acid Aggarwal, V.K.; Emme, I.; Fulford, S.Y. J. Org. Chem. 2003, 68, 692-700. Aggarwal, V.K.; Mereu, A.; Tarver, G.J.; McCague, R. J. Org. Chem. 1998, 63, 7183-7189.

  20. Baylis-Hillman Advances • Focus on increasing reaction rate • Increased pKa of Lewis base • Lewis acid Aggarwal, V.K.; Emme, I.; Fulford, S.Y. J. Org. Chem. 2003, 68, 692-700. Aggarwal, V.K.; Mereu, A.; Tarver, G.J.; McCague, R. J. Org. Chem. 1998, 63, 7183-7189. Kataoka, T.; Iwama, T.; Tsujiyama, S-I.; Iwamura, T.; Watanabe, S-I. Tetrahedron1998, 54, 11813-11824.

  21. Asymmetric Variants • Traditional Baylis-Hillman: 3 component • Electrophile • Activated alkene • Lewis-Base catalyst • 4th component • Lewis-Acid catalyst • Kinetic resolution

  22. Electrophile:

  23. Electrophile: Chiral Glyoxylates Bauer, T.; Tarasiuk, J. Tetrahedron: Asymmetry 2001, 12, 1741-1745.

  24. Electrophile: Chiral Glyoxylates 21 hours 0°C Bauer, T.; Tarasiuk, J. Tetrahedron: Asymmetry 2001, 12, 1741-1745.

  25. Electrophile: Chiral N-Sulfinimines Shi, M.; Xu, Y-M. Tetrahedron: Asymmetry 2002, 13, 1195-1200.

  26. Electrophile: Chiral N-Sulfinimines 5 days 20°C Shi, M.; Xu, Y-M. Tetrahedron: Asymmetry 2002, 13, 1195-1200.

  27. Activated Alkene:

  28. Activated Alkene: Oppolzer’s Sultam Brzezinski, L.J.; Rafel, S.; Leahy, J.W. J. Am. Chem. Soc. 1997, 119, 4317-4318.

  29. Activated Alkene: Oppolzer’s Sultam 12 hours 0°C Brzezinski, L.J.; Rafel, S.; Leahy, J.W. J. Am. Chem. Soc. 1997, 119, 4317-4318.

  30. Activated Alkene: Oppolzer’s Sultam Brzezinski, L.J.; Rafel, S.; Leahy, J.W. J. Am. Chem. Soc. 1997, 119, 4317-4318.

  31. Activated Alkene: Oppolzer’s Sultam Brzezinski, L.J.; Rafel, S.; Leahy, J.W. J. Am. Chem. Soc. 1997, 119, 4317-4318.

  32. Activated Alkene: Acryloylhydrazide 4 days 25°C Yang, K-S.; Chen, K. Org. Lett. 2002, 2(6), 729-731.

  33. Activated Alkene: Acryloylhydrazide 4 days 25°C Yang, K-S.; Chen, K. Org. Lett. 2002, 2(6), 729-731.

  34. Activated Alkene: Acryloylhydrazide 4 days 25°C Yang, K-S.; Chen, K. Org. Lett. 2002, 2(6), 729-731.

  35. Activated Alkene: 4-Menthyloxy-butenolide 4 hours -60°C Jauch, J. J. Org. Chem. 2001, 66, 609-611.

  36. Activated Alkene: 4-Menthyloxy-butenolide Jauch, J. J. Org. Chem. 2001, 66, 609-611.

  37. Activated Alkene: 4-Menthyloxy-butenolide Jauch, J. J. Org. Chem. 2001, 66, 609-611.

  38. Lewis-Base Catalyst: chiralDABCO? Iwabuchi, Y.; Nakatani, M.; Yokoyama, N.; Hatakeyama, S. J. Am. Chem. Soc. 1999, 121, 10219-10220.

  39. Lewis-Base Catalyst: cinchona alkaloids Iwabuchi, Y.; Nakatani, M.; Yokoyama, N.; Hatakeyama, S. J. Am. Chem. Soc. 1999, 121, 10219-10220.

  40. Lewis-Base Catalyst: cinchona alkaloid derivatives Iwabuchi, Y.; Nakatani, M.; Yokoyama, N.; Hatakeyama, S. J. Am. Chem. Soc. 1999, 121, 10219-10220.

  41. Lewis-Base Catalyst: cinchona alkaloid derivatives Iwabuchi, Y.; Nakatani, M.; Yokoyama, N.; Hatakeyama, S. J. Am. Chem. Soc. 1999, 121, 10219-10220.

  42. Lewis-Base Catalyst: cinchona alkaloid derivatives Iwabuchi, Y.; Nakatani, M.; Yokoyama, N.; Hatakeyama, S. J. Am. Chem. Soc. 1999, 121, 10219-10220.

  43. Lewis-Base Catalyst: cinchona alkaloid derivatives Iwabuchi, Y.; Nakatani, M.; Yokoyama, N.; Hatakeyama, S. J. Am. Chem. Soc. 1999, 121, 10219-10220.

  44. Lewis-Base Catalyst: cinchona alkaloid derivatives Iwabuchi, Y.; Nakatani, M.; Yokoyama, N.; Hatakeyama, S. J. Am. Chem. Soc. 1999, 121, 10219-10220.

  45. Lewis-Base Catalyst: cinchona alkaloid derivatives Iwabuchi, Y.; Nakatani, M.; Yokoyama, N.; Hatakeyama, S. J. Am. Chem. Soc. 1999, 121, 10219-10220.

  46. Lewis-Base Catalyst: cinchona alkaloid derivatives Iwabuchi, Y.; Nakatani, M.; Yokoyama, N.; Hatakeyama, S. J. Am. Chem. Soc. 1999, 121, 10219-10220.

  47. Lewis-Base Catalyst: cinchona alkaloid derivatives Iwabuchi, Y.; Furukawa, M. Esumi, T.; Hatakeyama, S. Chem. Comm.2001, 2030-2031.

  48. Lewis-Base Catalyst: cinchona alkaloid derivatives Shi, M.; Xu, Y-M. Angew. Chem. Int. Ed. 2002, 41(23), 4507-4510.

  49. Lewis-Base Catalyst: cinchona alkaloid derivatives 24 hours -30°C Shi, M.; Xu, Y-M. Angew. Chem. Int. Ed. 2002, 41(23), 4507-4510.

  50. Lewis-Base Catalyst: cinchona alkaloid derivatives Shi, M.; Xu, Y-M. Angew. Chem. Int. Ed. 2002, 41(23), 4507-4510.

More Related