280 likes | 441 Views
Front End Electronics for the SPD of LHCb. Electronics in Experimental High Energy Physics Xavier Vilasís-Cardona Enginyeria i Arquitectura La Salle URL - Barcelona. The collaboration in Barcelona. Universitat de Barcelona Lluis Garrido Ricardo Graciani David Gascón Ernest Aguiló
E N D
Front End Electronics for the SPD of LHCb Electronics in Experimental High Energy Physics Xavier Vilasís-Cardona Enginyeria i Arquitectura La Salle URL - Barcelona Università di Roma 'La Sapienza' 28-06-2002
The collaboration in Barcelona Universitat de Barcelona Lluis Garrido Ricardo Graciani David Gascón Ernest Aguiló Miriam Calvo Sergio Gómez Sebastià Bota Atilà Herms Angel Diéguez Xavier Cano Enginyeria i Arquitectura La Salle Rafael Ballabriga Sonia Luengo Mar Roselló Jordi Riera Xvc
Outlook • What is LHC ? • What is LHCb ? • The SPD • Photomultipliers • Very Front End Electronics • The ASIC • Front End Electronics
LHC : the future collider at CERN • Proton-Proton • Starting 2007 • Find the Higgs • Find new physics • 4 detectors • Alice • Atlas • CMS • LHCb
LHC : some data • Energy at collision: 7 TeV (1700 TeV for ions) • Dipole field at 7 TeV: 8.3 T • Bunch spacing: 7.5 m • Bunch separation: 24.95 ns • Particles per bunch: 10^11 • Current: 0.56 A • Luminosity: 10^34 cm^2 s • Energy per beam up to 0.35 GJ • Stored magnetic energy up to 1.29 GJ per sector • TOTAL STORED ENERGY = 11 GJ
LHCb A single-armspectrometer covering min ~15 mrad (beam pipe and radiation) max ~300 mrad (cost optimisation) Precise measurements of CP violation B mesons CKM matrix elements
LHCb : what is CP violation ? • CPT is an exact symmetry • C charge conjugation • P parity • T time reversal • CP is almost exact • CP violation explains matter-antimatter asymmetry
LHCb : the trigger • LHCb = 1000k channels : too much data • The multi-level trigger chain • Logging rate 200 Hz (20 MB/s) 200 TB/year • All LHC experiments: 5-8 PB/year
SPD spd ps ecal e spd ps ecal • Scintillator Pad Detector • In front of the calorimeter • Discriminates photons from electrons at level 0 of trigger
SPD structure • 6000 Scintillator Pads • Helicoidal WLS optic fibers • 64 channel PMT (Hamamatsu) • 1 bit per channel at 40 MHz • Synchronisation issues • Send bit to PreShower • Compare to a variable threshold • Radiation hard
SPD signal shape • Few photoelectrons • Irregular signal shape • Extended over 25 ns • Non-uniform PMT gain
ASIC : why an ASIC ? • 6000 channels : minimal area /ch • Processing speed 40 MHz • Power consumption < 2 W / 64 channels • Analog Processing + Digital Control • Signal range. 0 to 5 MIP (0 to 650 mV) • Electronics resolution 5% of 1 MIP • Dynamic range: 40 dB (7 bits)
ASIC Structure Bunch crossing Clock delay clock (40 MHz) (about 2 ns) Clock frequency division by 2 Pile-up Single to T rack & Hold Digital subtract Comparator Integrator dif ferential multiplexer + PMT chan. 1 - 17 % - 17 % - 17 % Digital dif ferential + link to PS FE Channel clocks A generation ECL internal CLock D (CMOS & ECL) (20 MHz) + PMT chan. 2 - 17 % - 17 % n/2 links + A D PMT chan. n m bits Serial interface for threshold V ref (or DAC range) SPD VFE programing control unit
ASIC characteristics • Programmable • Thresholds per sub-channel • Subtraction: from 0% up to 40% of the signal • T0: done externally with a delay unit (LAL design) • 0.8 m AMS BiCMOS Technology • Dual channel • Fully differential • Working at 3.3V • SEU and SEL protection • Triple voting • Guard rings
Review of ASIC runs • RUN1 (Sep 2000) • Test separate blocs • 1 full channel • RUN2 (Jun 2001) • 4 full channels • ECL vs CMOS output • RUN3 (Jan 2002) • New tunnable substractor • 1 full channel with digital control • On-chip DAC to program thresholds • RUN4 (Sep 2002) • 1 Complete processing channel • Separate blocs + digital control • Works at 3.3 V to reduce power consumption • Fully differential preamplifier added before the integration stage to meet PMT DC current limit requirements
ASIC : integrator measurements B' 1000 Data: Data1_B' 800 Model: Gauss Chi^2 = 2081.19889 R^2 = 0.98682 600 y0 51.68159 ± 23.05052 xc -61.70164 ± 0.05011 Differential histogram w 1.62784 ± 0.11995 A 1609.67905 ± 130.96337 400 200 0 -66 -64 -62 -60 -58 -56 -54 Threshold [mV] 10 circuits • Offset (Output Zero Error): <OZE> = + 38.6 mVio = 70 mV r.m.s. • Gain:<Vo/Vi> = 16.51 (for atypical input pulse) io = 0.091 r.m.s. (0,55%) • Treset = 5.5 ns (for 1 V output) • NoiseEno< 2 mV r.m.s(Using scope, C.F. 6) Eno< 1 mV r.m.s(Discriminator sweep of thresholds)
VFE Board description • 100 boards • 7x12 cm • Multiplexed LVDS
Very Front End Board Test beam boards • Sep 2001: RUN 2,4 full channels/ 4-layer board • ECL vs CMOS output • Clock signal distribution • Power Supply distribution • June 2002: RUN 2,4 full channels / 4-layer board • Improvements in board design • Signals distribution • June 2002: RUN 3,1 full channel and digital control/ 6-layer board • Digital signal distribution vs analog signal distribution • Noise effect vs number of layers
Front End Board • Control Unit : • Bus Bridge • Programmable Delays 1 Control Unit every 4 VFE Boards 5 Control Units in a Front End Board 6 Front End Boards