1 / 28

Front End Electronics for the SPD of LHCb

Front End Electronics for the SPD of LHCb. Electronics in Experimental High Energy Physics Xavier Vilasís-Cardona Enginyeria i Arquitectura La Salle URL - Barcelona. The collaboration in Barcelona. Universitat de Barcelona Lluis Garrido Ricardo Graciani David Gascón Ernest Aguiló

umay
Download Presentation

Front End Electronics for the SPD of LHCb

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Front End Electronics for the SPD of LHCb Electronics in Experimental High Energy Physics Xavier Vilasís-Cardona Enginyeria i Arquitectura La Salle URL - Barcelona Università di Roma 'La Sapienza' 28-06-2002

  2. The collaboration in Barcelona Universitat de Barcelona Lluis Garrido Ricardo Graciani David Gascón Ernest Aguiló Miriam Calvo Sergio Gómez Sebastià Bota Atilà Herms Angel Diéguez Xavier Cano Enginyeria i Arquitectura La Salle Rafael Ballabriga Sonia Luengo Mar Roselló Jordi Riera Xvc

  3. Outlook • What is LHC ? • What is LHCb ? • The SPD • Photomultipliers • Very Front End Electronics • The ASIC • Front End Electronics

  4. LHC : the future collider at CERN • Proton-Proton • Starting 2007 • Find the Higgs • Find new physics • 4 detectors • Alice • Atlas • CMS • LHCb

  5. LHC : some data • Energy at collision: 7 TeV (1700 TeV for ions) • Dipole field at 7 TeV: 8.3 T • Bunch spacing: 7.5 m • Bunch separation: 24.95 ns • Particles per bunch: 10^11 • Current: 0.56 A • Luminosity: 10^34 cm^2 s • Energy per beam up to 0.35 GJ • Stored magnetic energy up to 1.29 GJ per sector • TOTAL STORED ENERGY = 11 GJ

  6. LHCb A single-armspectrometer covering min ~15 mrad (beam pipe and radiation) max ~300 mrad (cost optimisation) Precise measurements of CP violation B mesons CKM matrix elements

  7. LHCb : what is CP violation ? • CPT is an exact symmetry • C charge conjugation • P parity • T time reversal • CP is almost exact • CP violation explains matter-antimatter asymmetry

  8. LHCb : the trigger • LHCb = 1000k channels : too much data • The multi-level trigger chain • Logging rate 200 Hz (20 MB/s) 200 TB/year • All LHC experiments: 5-8 PB/year

  9. SPD spd ps ecal e spd ps ecal • Scintillator Pad Detector • In front of the calorimeter • Discriminates photons from electrons at level 0 of trigger

  10. SPD structure • 6000 Scintillator Pads • Helicoidal WLS optic fibers • 64 channel PMT (Hamamatsu) • 1 bit per channel at 40 MHz • Synchronisation issues • Send bit to PreShower • Compare to a variable threshold • Radiation hard

  11. SPD signal shape • Few photoelectrons • Irregular signal shape • Extended over 25 ns • Non-uniform PMT gain

  12. SPD electronics design

  13. ASIC : why an ASIC ? • 6000 channels : minimal area /ch • Processing speed 40 MHz • Power consumption < 2 W / 64 channels • Analog Processing + Digital Control • Signal range. 0 to 5 MIP (0 to 650 mV) • Electronics resolution 5% of 1 MIP • Dynamic range: 40 dB (7 bits)

  14. ASIC Structure Bunch crossing Clock delay clock (40 MHz) (about 2 ns) Clock frequency division by 2 Pile-up Single to T rack & Hold Digital subtract Comparator Integrator dif ferential multiplexer + PMT chan. 1 - 17 % - 17 % - 17 % Digital dif ferential + link to PS FE Channel clocks A generation ECL internal CLock D (CMOS & ECL) (20 MHz) + PMT chan. 2 - 17 % - 17 % n/2 links + A D PMT chan. n m bits Serial interface for threshold V ref (or DAC range) SPD VFE programing control unit

  15. ASIC characteristics • Programmable • Thresholds per sub-channel • Subtraction: from 0% up to 40% of the signal • T0: done externally with a delay unit (LAL design) • 0.8 m AMS BiCMOS Technology • Dual channel • Fully differential • Working at 3.3V • SEU and SEL protection • Triple voting • Guard rings

  16. Review of ASIC runs • RUN1 (Sep 2000) • Test separate blocs • 1 full channel • RUN2 (Jun 2001) • 4 full channels • ECL vs CMOS output • RUN3 (Jan 2002) • New tunnable substractor • 1 full channel with digital control • On-chip DAC to program thresholds • RUN4 (Sep 2002) • 1 Complete processing channel • Separate blocs + digital control • Works at 3.3 V to reduce power consumption • Fully differential preamplifier added before the integration stage to meet PMT DC current limit requirements

  17. ASIC : RUN 4 layout

  18. ASIC : integrator

  19. ASIC : Track and Hold

  20. ASIC : substractor

  21. ASIC : latched comparator

  22. ASIC : integrator measurements B' 1000 Data: Data1_B' 800 Model: Gauss Chi^2 = 2081.19889 R^2 = 0.98682 600 y0 51.68159 ± 23.05052 xc -61.70164 ± 0.05011 Differential histogram w 1.62784 ± 0.11995 A 1609.67905 ± 130.96337 400 200 0 -66 -64 -62 -60 -58 -56 -54 Threshold [mV] 10 circuits • Offset (Output Zero Error): <OZE> = + 38.6 mVio = 70 mV r.m.s. • Gain:<Vo/Vi> = 16.51 (for atypical input pulse) io = 0.091 r.m.s. (0,55%) • Treset = 5.5 ns (for 1 V output) • NoiseEno< 2 mV r.m.s(Using scope, C.F. 6) Eno< 1 mV r.m.s(Discriminator sweep of thresholds)

  23. ASIC : integrator linearity

  24. ASIC : programmable substractor

  25. VFE Board description • 100 boards • 7x12 cm • Multiplexed LVDS

  26. Very Front End Board Test beam boards • Sep 2001: RUN 2,4 full channels/ 4-layer board • ECL vs CMOS output • Clock signal distribution • Power Supply distribution • June 2002: RUN 2,4 full channels / 4-layer board • Improvements in board design • Signals distribution • June 2002: RUN 3,1 full channel and digital control/ 6-layer board • Digital signal distribution vs analog signal distribution • Noise effect vs number of layers

  27. Front End Board • Control Unit : • Bus Bridge • Programmable Delays 1 Control Unit every 4 VFE Boards 5 Control Units in a Front End Board 6 Front End Boards

  28. Conclusions

More Related