1 / 30

Outline of the MOON detector Background rejection & Expected sensitivity R&D Summary

TAUP2007, Sendai, September 11-15, 2007. MOON for next-generation neutrino-less double beta decay experiment ; present status and perspective. T. Shima Research Center for Nuclear Physics, Osaka University for the MOON collaboration. Outline of the MOON detector

trapper
Download Presentation

Outline of the MOON detector Background rejection & Expected sensitivity R&D Summary

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. TAUP2007, Sendai, September 11-15, 2007 MOONfornext-generation neutrino-less double beta decay experiment ;present status and perspective T. Shima Research Center for Nuclear Physics, Osaka University for the MOON collaboration Outline of the MOON detector Background rejection & Expected sensitivity R&D Summary

  2. MOON collaboration • H. Ejiri* (CTU-Praha, RCNP/Osaka and NIRS) • T. Itahashi, K. Matsuoka, M. Nomachi, S. Umehara (Phys./OULNS, Osaka Univ.) • T. Shima (RCNP, Osaka Univ.) • K. Fushimi, K. Yasuda, Y. Kameda (GAS, Univ. of Tokushima) • R. Hazama (Hiroshima Univ.) • H. Nakamura (NIRS) • S. Yoshida (Tohoku Univ.) • T. Kii (IAE, Kyoto Univ.) • P.J. Doe, R.G.H. Robertson*, D.E. Vilches, J.F. Wilkerson, D.I. Will (CENPA, Univ. Washington) • S.R. Elliott, V. Gehman (LANL) • J. Engel (Phys. Astronomy, Univ. North Carolina) • M. Finger, M. Finger, K. Kuroda, M. Slunecka , V. Vrba (Phys. Charles Univ. and CTU-Praha) • M. Greenfield (ICU, Tokyo) • A. Para (FNAL) • A. Sissakian, V. Kekelidze, V. Voronon, G. Shirkov, A. Titov (JINR) • V. Vatulin, P. Kavitov (VNIIEF) * Contact persons.

  3. QD:100~200 meV NEMO3 CUORITINO IH: 50~25 meV Next-generation: Super-NEMO, MOON NH: 4~2 meV Future experiment KKDC440meV Goal of next-generation DBD experiments • Thermal Leptogenesis scenario favors 1meV < mn < 0.1eV • Astronomical observations (PLANCK, Ly-a, weak lensing etc.) will provide constraints of 25~65meV on mn. q132

  4. 0nbb nuclear matrix element

  5. MOON Mo/Majorana Observatory Of Neutrino 10~30mm 15mm 20~40mg/cm2 1 unit = 42 modules = 20kg bb source

  6. Detectors • Plastic scintillators (2m×1m×15mm/layer) : • b-ray energy & time, g-ray veto • FWHM DE/(E1+E2) = 7%@3MeV → 5% • Wire chambers (2m×1m×10~30mm/layer) : • gas mixture; Ar+CO2 • particle ID; b/g • correction for position dependent response of PLs • delayed anti-coincidence with a, b • position separation of 5mm×5mm (wire-spacing + charge-division or anode×cathode) • Active shieldings: thick PL or NaI

  7. Features Multi-layers of source foils, scintillators and wire chambers • capability to measure different bb nuclei • sensitivity to bb energy- and angular- correlations • good selectivity of bb and BG with information of E,t,position Compact and modular structure • scalable from sub-tons to multi-tons • easy to shield against external & internal BG’s • large acceptance

  8. Real-time detection of low-energy solar n 8B pep 7Be pp

  9. Backgrounds • RI impurities with large Qb : 214Bi, 208Tl • (n,n’g), (n,g) by m-induced neutrons • 2nbb : t2n/t0n > ~1/105

  10. 208Tl (Qb=4.999MeV) : b-g-g in source foil b g1 g2 --- to be rejected with • anti-coincidence by g1 • coincidence with MWPCs on both sides of source

  11. Response for 1.8MeV b+583keV g+2614keV g 20mBq/ton 208Tl in 100Mo ~0.3 events for 1 ton·yr measurement

  12. Neutron-induced g-rays Main components of MOON detector; 12C, 1H, 100Mo, etc. 1H(n,g)2H ; Q=2.225MeV << Qbb of 100Mo, 82Se, 150Nd…

  13. Production rates of neutron-induced g Fn (En < 20MeV) ~10-8 n/cm2/MeV/s at 2000m w.e. (Gaitskell 2001)

  14. Response for 5MeV g 0nbb window ~0.2 events for 1 ton·yr measurement at 2000m w.e.

  15. Estimated background rates ; summary

  16. Sensitivity for <mn> ; 100Mo 0nbb

  17. Sensitivity vs. Energy resolution MOON-1 MOON-1 (correct for position)

  18. H. Ejiri, Czeck. J. Physics, 56 (2006) No 5, 459. H. Nakamura, et al., nucl-ex/0609008 MOON-1 6-layers of PL 53×53×1cm3, Mo-Foil142g @20mg/cm2×2 PLs Mo foils PMTs DE/E(FWHM) = 7% at 3MeV → 5% with correction for position dependence

  19. R&D; prototype NaI(Tl) scintillator • provided by Horiba, Ltd. • 150mm×150mm×10mm slab, three PMTs on each side • better energy resolution for bb and BG gs • sensitivity for bb to excited states

  20. Summary MOONis one of the feasible solutions for next-generation 0nbb experiment, because of its high efficiency, good resolutions (E, x, t), compactness, scalarbility, etc. - Road map - FWHM= 5% or 4% @3MeV Cf. Next-generation 76Ge experiments ; 1ton×4yr ⇒ ~40meV

  21. 214Bi (Qb=3.27MeV) : single b --- rejected with • energy losses in both PLs > 500keV • b-ray track positions in MWPCs (5mm×5mm)

  22. Response for 214Bi single b 20mBq/ton 214Bi in 100Mo ~0.002 events for 1 ton·yr measurement

  23. 214Bi (Qb=3.27MeV) : b-g --- rejected with • anti-coincidence by Compton-scattered g • coincidence with MWPCs on both sides of source

  24. Response for 214Bi b-g 20mBq/ton 214Bi in 100Mo ~0.1 events for 1 ton·yr measurement

  25. m-induced neutrons Energy spectrum: Fn (En < 20MeV) ~10-8 n/cm2/MeV/s

  26. 12C+n cross sections

  27. Inelastic g ( for one unit (42 modules, 20kg 100Mo) )

  28. Capture g Assuming all neutrons are thermalized and captured inside the detector…. 374 40 73000 [b·mole/unit] ( i = 12C, 100Mo, or 1H )

  29. Accidental Coincidence of external 2614keV g-rays Response for 2614keV single g-ray (0.1Bq/kg 232Th in PMTs)

  30. Coincidence rate

More Related