1 / 54

Roberto Capote, IAEA/NDS, Vienna, Austria

IAEA Nuclear Data: the R eference I nput P arameter L ibrary (RIPL) for nuclear reaction calculations. Roberto Capote, IAEA/NDS, Vienna, Austria. RIPL-III participants. RIPL-II and RIPL-III participants. M. Avrigeanu Inst. de Fizica si Inginerie Nucleara “Horia Hulubei”, Romania

tolla
Download Presentation

Roberto Capote, IAEA/NDS, Vienna, Austria

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. IAEA Nuclear Data: the Reference Input Parameter Library (RIPL) for nuclear reaction calculations Roberto Capote, IAEA/NDS, Vienna, Austria

  2. RIPL-III participants RIPL-II and RIPL-III participants M. Avrigeanu Inst. de Fizica si Inginerie Nucleara “Horia Hulubei”, Romania T. Belgya Institute of Isotope and Surface Chemistry, Hungary O. Bersillon Centre d’Etudes Nucleaires de Bruyeres-le-Chatel, France R. Capote IAEA Nuclear Data Section T. Fukahori Nuclear Data Center, JAEA, Japan S. Goriely Institut d’Astrophysique, Université Libre de Bruxelles, Belgium Y. Han China Institute of Atomic Energy, PR China M. Herman National Nuclear Data Center, BNL, USA S. Hilaire DPTA/SPN, CEA/DAM Ile de France, France A.V. Ignatyuk IPPE, Obninsk, Russian Federation S. Kailas Bhabha Atomic Research Centre, India A. Koning Nuclear Research and Consultancy Group, The Netherlands P. Obložinskỷ Brookhaven National Laboratory, USA V. A. Plujko Taras Shevchenko National University, Kiev, Ukraine E. S. Soukhovitskii Joint Institute of Energy and Nuclear Research, Belarus P. Talou Los Alamos National Laboratory, USA P. G. Young Los Alamos National Laboratory, USA G. Zhigang China Institute of Atomic Energy, PR China Roberto Capote, IAEA Nuclear Data Section E-mail: R.CapoteNoy@iaea.org

  3. A long time ago before RIPL … (Recommended/any) inputs for nuclear reaction calculations ? Roberto Capote, IAEA Nuclear Data Section E-mail: R.CapoteNoy@iaea.org

  4. Improved description of nuclear reactions, easier calculations allowing for a much better understanding RIPL Background • Nuclear reaction theory: sufficiently advanced to meet most of the requirements for a number of applications • Major sources of uncertainty are the input parameters needed to perform theoretical calculations RIPL Objective Improve the methodology of nuclear data evaluation by increasing predictive power, accuracy and reliability of theoretical calculations by nuclear reaction model codes Roberto Capote, IAEA Nuclear Data Section E-mail: R.CapoteNoy@iaea.org

  5. IAEA Nuclear Data Section has addressed these needs through a series of Coordinated Research Projects dedicated to the production of a Reference Input Parameter Library (RIPL) 1994 – 2008 The longest running IAEA/NDS project Roberto Capote, IAEA Nuclear Data Section E-mail: R.CapoteNoy@iaea.org

  6. Reference Input Parameter Library Electronic Starter File (known as Reference Input Parameter Library-1) was developed and made available to users throughout the world in 1997 (compilation) • 1994-1997: RIPL-1 starter file (http://www-nds.iaea.org/ripl/ ) Second CRP was initiated on “Nuclear Model Parameter Testing for Nuclear Data Evaluation (Reference Input Parameter Library: Phase II)”, and completed in 2003. Revision, extension and validation of the original RIPL-1 Starter File to produce a consistent RIPL-2 library of recommended input parameters. • 1998-2003: RIPL-2 database (http://www-nds.iaea.org/RIPL-2/) Main goal: Energy applications, E<20MeV Roberto Capote, IAEA Nuclear Data Section E-mail: R.CapoteNoy@iaea.org

  7. RIPL-3 additional requirements • Reactions at high energies for ADS (up to 150 MeV), production of medical radioisotopes (up to 100 MeV) and radiotherapy (up to 250 MeV) • Reactions on nuclei far from stability for ADS and astrophysics • Charged-particle reactions for all non-energy applications • Number of simple routines for the calculation of basic input data from the parameters contained in the library will be provided to reduce a risk of misusing the parameters Roberto Capote, IAEA Nuclear Data Section E-mail: R.CapoteNoy@iaea.org

  8. Reference Input Parameter Library Third (and final) CRP: “Parameters for Calculation of Nuclear Reactions of Relevance to Non-Energy Nuclear Application (Reference Input Parameter Library: Phase III)” started in 2003. The project is close to completion. The update of the RIPL-2 database will be released in September 2008. 2003-2008: RIPL-3 database (http://www-nds.iaea.org/RIPL-3/) Roberto Capote, IAEA Nuclear Data Section E-mail: R.CapoteNoy@iaea.org

  9. 1.- MASSES FRDM file including Audi et al. (2003) masses Skyrme HFB file (HFB-14) including Audi et al. (2003) masses Skyrme HFB spherical density distributions (HFB-14) Gogny HFB spherical density distributions (D1S) rms(M) = 650-750 keV on 2149 (Z ≥ 8) experimental masses(Audi et al., 2003) • To be compared with • FRDM predictions: rms(M) = 676 keV (2149 Z ≥ 8 nuclei) • - Previous HF predictions: • Traditional Skyrme forces: rms(M) >> 2 MeV (120 e-e sph) • Ex. Oak Ridge "Mass Table" based on HFB with SLy4 • rms(M)=4.7MeV on 570 e-e sph+def nuclei Roberto Capote, IAEA Nuclear Data Section E-mail: R.CapoteNoy@iaea.org

  10. Comparison with experimental masses(2149 nuclei: Audi, Wapstra & Thibault 2003) HFB14 model: S. Goriely, M. Samyn, J.M. Pearson, (2007) Phys. Rev. C75, 064312 Roberto Capote, IAEA Nuclear Data Section E-mail: R.CapoteNoy@iaea.org

  11. HFB14 vs. experimental data Charge radii Charge densities Roberto Capote, IAEA Nuclear Data Section E-mail: R.CapoteNoy@iaea.org

  12. Impact of the HFB pairing strength on nuclear level densities at U=Sn BSk13=BSk14 HFB+combinatorial versus experimental s-wave spacings Roberto Capote, IAEA Nuclear Data Section E-mail: R.CapoteNoy@iaea.org

  13. HFB14: A modified collective correction !! of particular relevance at large deformation --> Fission calculations !! • a perturbative cranking correction for rotational correlations • a phenomenological correction for “vibrational” correlations rotational rotational + vibrational Roberto Capote, IAEA Nuclear Data Section E-mail: R.CapoteNoy@iaea.org

  14. Fission barriers vs. « experimental » data NO “VIBRATIONAL” CORRECTION Bin(Exp) – Bin(HFB) 52 nuclei with Z ≥ 88 rms = 1.2 MeV Bout(Exp) – Bout(HFB) 45 nuclei rms = 2.0 MeV Roberto Capote, IAEA Nuclear Data Section E-mail: R.CapoteNoy@iaea.org

  15. Fission barriers vs. « experimental » data WITH “VIBRATIONAL” CORRECTION Bin(Exp) – Bin(HFB) 52 nuclei with Z ≥ 88 rms = 0.67 MeV Bout(Exp) – Bout(HFB) 45 nuclei rms = 0.65MeV Roberto Capote, IAEA Nuclear Data Section E-mail: R.CapoteNoy@iaea.org

  16. 2.- DISCRETE LEVELS SCHEME Roberto Capote, IAEA Nuclear Data Section E-mail: R.CapoteNoy@iaea.org

  17. 3.- RESONANCES D0(RIPL-2)/D0(Mug2006)s-resonance spacing Roberto Capote, IAEA Nuclear Data Section E-mail: R.CapoteNoy@iaea.org

  18. Analysis of the resonance parameters for 238U The set of resonances at the energy region up to 20 keV contains 898 s-wave resonances, 849 p-wave resonances with J=1/2 and 1565 p-wave resonances with J=3/2 [L.Leal et al., Nuclear Data for Science and Technology, Santa Fe, 2004, p.276]. Roberto Capote, IAEA Nuclear Data Section E-mail: R.CapoteNoy@iaea.org

  19. Average resonance parameters for 238U: D0, eV D1, eV S0, 10-4 S1, 10-4 1965, Gilbert-Cameron 17.70.7 -- -- -- 1979, Rohr et al. 21.52.2 -- 1.02 0.16 -- 1984, Mughabghab 20.91.1 7.20.4 1.20.1 1.70.3 1986, Ignatyuk et al. 21.7 0.9 7.30.5 1.150.12 1.70.5 1996, Beijing, RIPL-1 21.0 0.05 -- 0.930.06 -- 2002, RIPL-2 (10 keV) 20.80.3 7.71.0 1.030.08 1.60.4 2004, Leal et al., (20 keV) -- -- 1.070.07 1.710.07 2006, Mughabghab 20.260.72 7.420.23 1.290.13 2.170.19 2007, present (20 keV) 20.20.2 7.590.05 1.020.02 1.620.05 Roberto Capote, IAEA Nuclear Data Section E-mail: R.CapoteNoy@iaea.org

  20. Analysis of the resonance parameters for 107Ag The set of resonances at the energy region up to 6.5 keV contains 203 s-wave resonances and 196 p-wave resonances, which were inserted into the ENDF/B-VII file from the Mughabghab-2006. It is impossible to describe the PT-distribution with Do=14.9+/-.6 eV /Mug2006/. Roberto Capote, IAEA Nuclear Data Section E-mail: R.CapoteNoy@iaea.org

  21. Average resonance parameters for 107Ag D0, eV D1, eV S0, 10-4 S1, 10-4 1965, Gilbert-Cameron 316 -- -- -- 1979, Rohr et al. 24.02.8 -- 0.41 0.13 -- 1984, Mughabghab 163 -- 0.380.07 3.80.6 1986, Ignatyuk et al. 22 2 -- 0.420.05 3.80.5 1996, Beijing, RIPL-1 22.6 0.09 -- 0.540.04 -- 2002, RIPL-2 22.00.4 -- 0.400.06 3.80.8 2006, Mughabghab 14.90.68.490.25 0.460.05 3.760.31 2007, present (B-VII) 22.40.59.10.6 0.470.05 2.20.3 Roberto Capote, IAEA Nuclear Data Section E-mail: R.CapoteNoy@iaea.org

  22. List of analyzed differences: Nucleus Mug81/84 RIPL-2 Mug06 Present D0, eV S0 D0, eV S0 D0, eV S0D0, eV S0 Cm-243 1.1.2 1.5.3 .75 .15 1.5.31.11.07 1.20.22 .69.06 1.25 .15 Am-243m .40.08 1.3.2 .40.081.3.2.29.02 1.47.25 .26.06 1.3.1 Pa-232 -- --.75.15 .65.15 .47.04 1.22.26 .48.12 .80.15 Hg-201 -- --9030 1.2. 523320 .80.19 7030 1. 3.5 Hg-198 10533 --10535 1.3.5693 -- 10020 1.3.3 Dy-156 2.7.4 --4.81.6 1.8.42.7.4 3.3 1.3 2.8.3 1.8.4 Eu-152 .25.03 --.56.10 1.4.6.25.03 -- .35.05 1.9.5 Te-130 870140 .16.05 1500500 .2.1 1130180* .16.05 1040100* -- Te-128 26030 .25.10 740150 .2.1 1510375 .26.151460300 .20.07 I-129 -- --303 .5.1 19.01.4 .42.07 13.6.3 .35.05 I-127 9.7.8 .8.1 153 .8.29.7.8 .6.1 15.4.5 .71.08 Ag-107 163 .38.07 22.0.4 .40.0614.9.6 .46.05 22.4.5 .47.05 Pd-110 9510* .40.0615050 .25.15 33443 .47.17 28050 .30.10 Pd-106 674* .34.0427090 .6.3 17425 .42.1914432 .65.15 Roberto Capote, IAEA Nuclear Data Section E-mail: R.CapoteNoy@iaea.org

  23. 4.- OPTICAL MODEL • Dispersive CC potentials for nucleon induced reactions • Rigid rotor: Actinides, W-Ta-Hf, Au, Mn, Rh, … • Soft rotor: Zr • Capote, Soukhovitskii, et al (2005-2008) • Kunieda et al (2008) • 2. Soft rotor CC OMPs (Soukhovitskii et al, 2004) • 3. Global dispersive spherical potentials • Neutrons – Morillon & Romain (2005) • Protons – Li & Cai (2008) • 4. OMPs for complex charged particles • Alphas, Deuteron, Tritons Roberto Capote, IAEA Nuclear Data Section E-mail: R.CapoteNoy@iaea.org

  24. DISPERSIVE OMPs Molina, Capote, Quesada and Lozano PRC65(2002) 034616 + Powerful CC OMP fitting code OPTMAN E. Soukhovitskii, S. Chiba, et al Roberto Capote, IAEA Nuclear Data Section E-mail: R.CapoteNoy@iaea.org

  25. Dispersive Coupled Channels OMP Soukhovitskii, Capote, Quesada and Chiba, PRC72 (2005) 024604 Dispersive coupled channel analysis of nucleon scattering from 232Th up to 200 MeV Roberto Capote, IAEA Nuclear Data Section E-mail: R.CapoteNoy@iaea.org

  26. Dispersive Coupled Channels OMP Capote,Soukhovitskii, Quesada and Chiba, PRC72 (2005) 064210 Is a global coupled-channel dispersive optical model potential for actinides feasible? Roberto Capote, IAEA Nuclear Data Section E-mail: R.CapoteNoy@iaea.org

  27. Dispersive Coupled Channels OMP Capote,Soukhovitskii, Quesada and Chiba, Varenna 2006; NEMEA-3 DCC OMP for tungsten nuclides Roberto Capote, IAEA Nuclear Data Section E-mail: R.CapoteNoy@iaea.org

  28. A global DCC OMP for actinides Capote,Soukhovitskii, Quesada, Chiba and Bauge, JNST45 (2008) 333 Complete table in Proceedings of the International Conference on Nuclear Data for Science and Technology, April 22-27, 2007, Nice, France, EDP Sciences, 2008 DCC OMPs for 31 actinides, tungsten and tantalum nuclei derived using approximated Lane consistent formulation with Coulomb corrections Roberto Capote, IAEA Nuclear Data Section E-mail: R.CapoteNoy@iaea.org

  29. Are DCC OMPs Lane consistent ? DCC OMPIsospin dependence Lane equations Roberto Capote, IAEA Nuclear Data Section E-mail: R.CapoteNoy@iaea.org

  30. Dispersive Coupled Channels OMP Capote,Soukhovitskii, Quesada and Chiba, PRC76 (2007) 057602 Approximate Lane consistency of the dispersive coupled-channels potential for actinides Roberto Capote, IAEA Nuclear Data Section E-mail: R.CapoteNoy@iaea.org

  31. Zr-90 DCCOMP based on soft rotor SOFT ROTOR COUPLED SCHEME (7 levels) (3124) (3387) (2748) -- (>3400) (1607) (1928) NUDAT v 2.4 Roberto Capote, IAEA Nuclear Data Section E-mail: R.CapoteNoy@iaea.org

  32. DCC OMP - soft rotor couplings Soukhovitskii, Capote,Quesada and Chiba, Unpublished n + 90Zr Roberto Capote, IAEA Nuclear Data Section E-mail: R.CapoteNoy@iaea.org

  33. DCC OMP - soft rotor couplings Soukhovitskii, Capote,Quesada and Chiba, Unpublished n + 90Zr p + 90Zr Roberto Capote, IAEA Nuclear Data Section E-mail: R.CapoteNoy@iaea.org

  34. 5.- LEVEL DENSITIES • Based on OBSERVABLES: • RIPL-3 discrete levels (2) and Neutron resonances (3) Roberto Capote, IAEA Nuclear Data Section E-mail: R.CapoteNoy@iaea.org

  35. Roberto Capote, IAEA Nuclear Data Section E-mail: R.CapoteNoy@iaea.org

  36. A NEW global combinatorial NLD formula S. Hilaire & S.Goriely (2007) • Particle-hole as well as total parity-, spin- and E-dependent NLD • Deviation from the statistical limit at low energies (discrete counting) s-wave p-wave 292 exp. D0 frms=2.30 http://www-astro.ulb.ac.be/Html/nld_comb_ph.html Roberto Capote, IAEA Nuclear Data Section E-mail: R.CapoteNoy@iaea.org

  37. Renormalization factors to reproduce D0 and cumulative levels Roberto Capote, IAEA Nuclear Data Section E-mail: R.CapoteNoy@iaea.org

  38. HFB LD vs OSLO data Roberto Capote, IAEA Nuclear Data Section E-mail: R.CapoteNoy@iaea.org

  39. Impact of LDs on cross section calculations Defined local and global systematics Unpublished (Koning, Hilaire, Goriely) Roberto Capote, IAEA Nuclear Data Section E-mail: R.CapoteNoy@iaea.org

  40. 6.- GAMMA RAY STRENGTH FUNCTIONS Lorentzian, EGLO, MLO, SMLO, QRPA-HFB14 (See V. Plujko presentation tomorrow) The E1 gamma-decay strength function on 144Nd for U=Bn The E1 photoabsorption cross section on 144Nd Roberto Capote, IAEA Nuclear Data Section E-mail: R.CapoteNoy@iaea.org

  41. Roberto Capote, IAEA Nuclear Data Section E-mail: R.CapoteNoy@iaea.org

  42. Roberto Capote, IAEA Nuclear Data Section E-mail: R.CapoteNoy@iaea.org

  43. 7.- FISSION HFB14 fission barriers vs. « experimental » data Bin(Exp) – Bin(HFB) 52 nuclei with Z ≥ 88 rms = 0.67 MeV Bout(Exp) – Bout(HFB) 45 nuclei rms = 0.65MeV Roberto Capote, IAEA Nuclear Data Section E-mail: R.CapoteNoy@iaea.org

  44. Projection of the static path along the quadrupole deformation parameter 2 HFB14 The U isotopes The Cm isotopes Roberto Capote, IAEA Nuclear Data Section E-mail: R.CapoteNoy@iaea.org

  45. The Cm isotopes in the very n-rich region: 270 ≤ A ≤ 280 280Cm: N=184 shell closure Roberto Capote, IAEA Nuclear Data Section E-mail: R.CapoteNoy@iaea.org

  46. Default input parameters for EMPIRE calculations are obtained from RIPL-2 (IAEA) [1] Default input parameters for EMPIRE calculations are obtained from RIPL-2 (IAEA) [1] NEW EMPIRE VERSION 3.0 Roberto Capote, IAEA Nuclear Data Section E-mail: R.CapoteNoy@iaea.org

  47. IMPROVED FISSION MODELLING: BARRIERS + WELLS (absorption) Roberto Capote, IAEA Nuclear Data Section E-mail: R.CapoteNoy@iaea.org

  48. 235U(n,f) RIPL-2 original HFB normalized HFB Roberto Capote, IAEA Nuclear Data Section E-mail: R.CapoteNoy@iaea.org

  49. 238U(n,f) RIPL-2 original HFB normalized HFB Roberto Capote, IAEA Nuclear Data Section E-mail: R.CapoteNoy@iaea.org

  50. 238Pu(n,f) RIPL-2 original HFB normalized HFB Roberto Capote, IAEA Nuclear Data Section E-mail: R.CapoteNoy@iaea.org

More Related