1 / 46

Mechanical Design of Transmission Lines

Mechanical Design of Transmission Lines. General Considerations. Electrical Considerations for T.L. Design: Low voltage drop Minimum power loss for high efficiency of power transmission.

tolla
Download Presentation

Mechanical Design of Transmission Lines

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Mechanical Design of Transmission Lines

  2. General Considerations Electrical Considerations for T.L. Design: • Low voltage drop • Minimum power loss for high efficiency of power transmission. • The line should have sufficient current carrying capacity so that the power can be transmitted without excessive voltage drop or overheating.

  3. Conductivity of Conductor: R = ρ.L/A , or R = L/Ϭ. A Where: L: Conductor length. A: Conductor cross sectional area. ρ: resistivity Ϭ: Conductivity (Ϭ= 1/ρ)

  4. The conductor conductivity must be very high to reduce Conductor resistance R and hence reduce losses PL= 3 I2 .R

  5. Mechanical Considerations for T.L. Design: • The conductors and line supports should have sufficient mechanical strength: • to withstand conductor weight, Conductor Tension and weather conditions (wind, ice). • The Spans between the towers can be long. • Sag will be small. • Reducing the number and height of towers and the number of insulators.

  6. Heat expansion coefficient must be very small. Rt= R0. (1 + α0 .t) αt = α0/(1+ α0.t) α t is the heat expansion coefficient at t.

  7. TYPES OF CONDUCTORS MATERIALS

  8. 1- All Aluminum Conductors (AAC) lowest cost – low mechanical strength Used for small span

  9. 2- Aluminum Conductor Steel Reinforced (ACSR) 1- Steel strands 2- Aluminum strands ACSR (26/7)

  10. Advantages of ACSR • High mechanical strength can be utilized by using spans of larger lengths. • A reduction in the number of supports also include reduction in insulators and the risk of lines outage due to flash over or faults is reduced. • losses are reduced due to larger diameter of conductor. • High current carrying capacity.

  11. 3- All Aluminum Alloy Conductor (AAAC) وهى عبارة عن سبيكة من الألمونيوم والماغنسيوم والسيليكون المعالجة حراريا - له متانة عالية (أكبر نسبة متانة مع الوزن) – وبالتالى يمكن زيادة المسافة بين الابراج مما يقلل من التكلفة - له مقاومة أقل وبالتالى يقلل من الفقد فى القدرة - غير معرض تآكل الجلفنة كما فى النوع السابق

  12. 4-Aluminum Conductor Alloy Reinforced (ACAR) وفيه استبدل القلب المكون من أسلاك الصلب بقلب من أسلاك من سبيكة من الالمونيوم

  13. Types of Supports • Wooden Poles • Reinforced Concrete Poles • Steel Poles • Lattice Structure Steel Towers

  14. Wooden Poles

  15. Reinforced Concrete Poles

  16. Steel Poles

  17. Lattice Structure Steel Towers الأكثر استخداما فى الجهد العالى: الأعلى نسبة متانة/ الوزن الأطول عمرا سهولة التركيب والتجميع تتحمل قوى ميكانيكية عالية يعيبها: - وجوب دهانها من وقت لآخر - تحتاج اساسات خرسانية – تكاليف نقلها عالية

  18. Types of Towers 1- Suspension Tower 2- Tension Tower 3- Angle Tower 4- End Tower

  19. 1- Suspension Tower

  20. 2- Tension Tower

  21. 3- Angle Tower

  22. 4- End Tower This type of towers exists in the beginning and at the end of the line which exposed to tension in one side.

  23. SAG AND TENSION CALCULATIONS

  24. Sag of Transmission Lines Sag of T.L depends on: • Conductor weight. • Span length, • Tension in the conductor, T • Weather conditions (wind , ice). • Temperature.

  25. Minimum Clearance between the ground and the conductor kV C (m) 0.4 5.5 11 5.5 33 6.0 66 6.2 132 6.2 220 7.0 400 8.4

  26. Conductor Spacing Spacing = (S )0.5 + V/150 Where: S: Sag in meters. V: Line voltage in kV.

More Related