Jeopardy

1 / 26

# Jeopardy - PowerPoint PPT Presentation

Jeopardy. 100. Is the ordered pair (-4, 3) a solution to the inequality 5x + 4y < 9? Show work to justify your answer. 200. Translate and graph. All real numbers that are less than -1 or greater than 3. 300. Translate and graph.

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.

## Jeopardy

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
100

Is the ordered pair (-4, 3) a solution to the inequality 5x + 4y < 9?

200

Translate and graph.

All real numbers that are less than -1 or greater than 3.

300

Translate and graph.

All real numbers that are greater than -6 and less than 2.

400

Separate –8 < –2x ≤ 11 into two inequalities. Put the correct compound inequality word between them.

500

Separate 9 < 3x + 12 < 33 into two inequalities. Put the correct compound inequality word between them.

100

Solve the multi-step inequality. Show all work.

3(8–p) < 42

200

Solve the multi-step inequality. Show all work.

10 d – 9 <15 + 4d

300

Solve the multi-step inequality. Show all work.

4(x – 3) < 4x + 6

400

Solve the multi-step inequality. Show all work.

2(5x – 12) – 2x 8x + 3

500

Solve the multi-step inequality. Show all work.

7( p + 3) < 4p + 21 + 3p

100

Write a compound inequality that describes the graph.

200

Write a compound inequality that describes the graph.

300

Solve the compound inequality and graph the solution.

–24 < 2(2x – 3) ≤ 32

400

Solve the compound inequality and graph the solution.

3x + 3 < 0 or x – 4 > –3

500

Solve the compound inequality and graph the solution.

6 + 2(x + 1) < 0 or 2x – 4 > 8

100

The cost to purchase a DVD is \$8.75. You have a \$50 gift card. Write an inequality that models the number of DVDs that you can purchase with the gift card.

200

The cost to purchase a DVD is \$8.75. You have a \$50 gift card. What’s the maximum number of DVDs that you can purchase?

300

Graph each inequality on the coordinate plane.

y > –2

400

Graph each inequality on the coordinate plane.

y ≥ –2x + 4

500

Graph each inequality on the coordinate plane.

3x + 4y ≥ 12

100

Create your own absolute value inequality. Solve it.

200

Solve the absolute value equation.

|4x + 1| = 17

300

Solve the absolute value equation.

|x – 6| + 8 = 6

400

Solve the absolute value inequality and graph the solution.

|x – 4| < 10

500

Solve the absolute value inequality and graph the solution.

6|2x + 9| – 14 ≤ 16