330 likes | 414 Views
This talk by Ralf Engels at the LEAP conference delves into increasing fusion reaction cross-sections using polarized particles, the survival of polarizations in plasma, and the handling of polarized fuel in fusion reactors. It touches on the experimental setup at ANKE/COSY for polarized H2 molecules and explores nuclear polarization losses in molecules. The principles of nuclear magnetism and spin relaxation of H2/D2 molecules are discussed, alongside ionization processes and the production of polarized H2S. Experimental results and theoretical insights are presented, shedding light on the complex dynamics of polarized hydrogen molecules in fusion reactions.
E N D
on the LEAP conference Polarized Deuterium/Hydrogen Molecules Possible Fuel for Nuclear Fusion Reactors? • by Ralf Engels • JCHP / Institut für Kernphysik, FZ Jülich • 14.11.2013
Important Questions for Polarized Fusion • Can the total crosssectionsofthefusionreactionsbe increasedbyuseofpolarizedparticles? (See talksbyPaetz gen. Schieck, Deltuva, Kravchenko, Kravtsov) • Will polarizationsurvive in a plasma? (See talksby Holler andDidelez) • What will happen in the different typesoffusionreactors? (See talksby Temporal andSandorfi) • Howtogetandhowto handle polarizedfuel?
p, p, d, d with momenta up to 3.7 GeV/c PIT@ANKE • internal experiments – with the circulating beam • external experiments – with the extracted beam
PIT @ ANKE/COSY Main parts of a PIT: • Atomic Beam Source • Target gas hydrogenordeuterium • H beam intensity (2 hyperfine states) 8.2 . 1016 atoms / s • Beam size at the interaction point σ = 2.85 ± 0.42 mm • Polarization for hydrogen atom PZ = 0.89 ± 0.01 (HFS 1) PZ = -0.96 ± 0.01 (HFS 3) • Polarization for deuterium atoms atom PZ = 0.88 / PZZ = 0.88 (HFS 1/6) PZ = 0.005 / PZZ = -1.71 (HFS 2/5) • Lamb-Shift Polarimeter • Storage Cell • M. Mikirtychyants et al.; NIM A 721 (0) 83 (2013)
ABS and Lamb-shift polarimeter 6-pole magnet rf-transition 6-pole magnet
Polarized H2 Molecules • Eley-Rideal Mechanism • Pm = 0.5 • Pa • Is there a way to increase Pm P • (surface material, T, B etc)?
Polarized H2 Molecules • Measurements from NIKHEF, IUCF, HERMES show that recombined molecules retain a fraction of initial nuclear polarization of atoms! • The HERMES Collaboration; Eur. Phys. J. D 29, 21–26 (2004) • DOI: 10.1140/epjd/e2004-00023-5
Theory Abragam: The PrinciplesofNuclearMagnetism Hamiltoniantodescribethenuclearspinrelaxationof H2molecules H = ωI ( I1z + I2z) + ωJJz + ω‘ (I1 + I2)·J + ω‘‘ { I1· I2– 3(I1· n)(I2 · n)} I1andI2arethespinsofthetwoprotons I1 + I2 = I J istherotational angular momentumofthemolecule ωI = - γI H0istheprotonLamorfrequency in theappliedfield H0 ωJ = - γJ H0istheLamorfrequencyoftherotationalmagneticmomentofthe H2 ω‘ = - γI H‘ isthestrengthofthecouplingbetweenthemagneticmomentofthe protonsandthemagneticfieldproducedattheirpositionsbythe rotationofthemolecule ( H‘ = 2.7 mT) ω‘‘ = 2 γI H‘‘ = γI2 ħ/ b3isthestrengthofthedipolarcouplingbetweentheprotons, b istheirdistance, andnistheunitvectorb/b (H‘‘ = 3.4 mT). • Bc (Hz) ≠ Bc (Dz) ≠ Bc (Dzz)
Polarized H2 Molecules • Polarization losses of the molecules • A. Abragam: The Principles of Nuclear Magnetism (1961) • Spin Relaxation of H2/D2 Molecules The polarizationlossesduring a single wall collisiondepend on: • Nuclear Spin I • PolarizationPm • Temperature • Magneticfield in thecell • n ≈ 1000 • 2 • Bc • ( ) • - n • B • P(B,n) = Pm · e • Nuclear Polarization of Hydrogen Molecules from • Recombination of Polarized Atoms • T.Wise et al., Phys. Rev. Lett. 87, 042701 (2001). • Bc = 6.1 mT
The idea • B ~ 1T • polarized • cell wall • Recombination of polarized atoms • into molecules • Conversion of polarized atoms and • molecules into ions • Separation of protons and H2 by • energy with the Wienfilter • Measurement of proton and H2 • polarization in LSP • + • +
The Setup • ISTC Project # 1861 PNPI, FZJ, Uni. Cologne • DFG Project: 436 RUS 113/977/0-1
The Ionization Processes • + • H + e → H + 2e • (Ee = 150 eV: σ = 0.46 · 10-16 cm2) • (www.nist.gov) • + • H2 + e → H2 + 2e • (Ee = 150 eV: σ = 0.88 · 10-16 cm2) • + • H2 + e → H + 2e + … • (Ee = 150 eV: σ = 0.082 · 10-16 cm2)
Experimental results • Mass separation with the Wienfilter • Fel = FB • E • q = - q • v • B
Experimental results • Wienfilter function of the protons in the LSP • Ekin(p) = 1 keV
Experimental results • + • Wienfilter function of the H2 ions in the LSP
Experimental results • + • How are the polarized H2S produced from H2? • 2-step process (Stripping at the Cs + H2S production) • + • 1-step process: Direct production: H2 + Cs → H2S + Cs+… • Cross section: • σ(p→H2S) ≈ 35·σ(H2→H2S) • +
Theory + H2 Pm = 0.5 Bc = 6.1 mT
Experimental results • Protons: • See Talk by A. Nass on Friday
Experimental results • Polarization of the Protons • (HFS 1, Ep = 4 keV, Gold Surface, B=0.28 T) • 0.6 • 0.5 • 0.4 • 0.3 • 0.2 • 0.1 • 0
Experimental results • Measurements on Fomblin (Perfluorpolyether PFPE) • HFS 3 • TCell = 100 K • Protons: • Pm = - 0.81 ± 0.02 • n = 136 ± 15 • c = 0.993 ± 0.005 • + • H2 : • Pm = - 0.84 ± 0.02 • n = 217 ± 24
Experimental results • J.S. Price and W. Haeberli, • “Measurement of cell wall • depolarization of polarized • hydrogen gas targets in a weak • magnetic field” • Nuclear Instruments and Methods • in Physics Research A 349 (1994) • 321-333
Experimental results • Measurements on Fomblin Oil (Perfluorpolyether PFPE) • HFS 3: Next day • TCell = 100 K • Protons: • Pm = - 0.80 ± 0.02 • n = 336 ± 104 • c = 0.526 ± 0.015 • Pa = - 0.80 ± 0.02 • + • H2 : • Pm = - 0.80 ± 0.02 • n = 110 ± 47
Experimental results • Measurements on Fomblin (Perfluorpolyether PFPE) • HFS 2+3: Next day • TCell = 100 K • Protons: • Pm = - 0.68 ± 0.02 • n = 409 ± 87 • c = 0.88 ± 0.02 • Pa = -0.68 ± 0.02 • + • H2 : • Pm = - 0.68 ± 0.02 • n = 184 ± 29
Experimental results • Measurements on Fomblin (Perfluorpolyether PFPE) • + • Bcell = 0.4 T , H2 only • HFS 3 • HFS 2+3
Experimental results • Very first results on water (Fomblin): (3. day) • p • HFS3 • Very Preliminary • + • H2
Experimental results • Very first results on water (Gold): Tcell = 100 K • Pm = 0.28 ±0.01 • n = 317 ± 16 • Pm = - 0.25 ±0.01 • n = 330 ± 26 • Pm = - 0.27 ±0.01 • n = 605 ± 27 • -0,44
Experimental results • Measurements on Fused Quartz Glass after several days • Deuterium: HFS 3+4 (Vector and Tensorpolarized) • (Pa,z = - 0.91 ± 0.01 / Pa,zz = + 0.85 ± 0.02) • TCell = 100 K • Pm,zz = 0.24 ± 0.03 • n = 1590 ± 590 • c = 0.980 ± 0.006 • Pm,zz = 0.24 ± 0.03 • n = 950 ± 246 • Pm,z = - 0.40 ±0.01 • n = 701 ± 180 • c = 0.984 ± 0.008 • Pm,z = - 0.40 ±0.01 • n = 686 ± 75
Conclusion Wecanmeasure: • therecombinationof hydrogen/deuteriumatoms on different surfacesandfor different HFS. • thepolarizationofatomsandmoleculesin a storagecell. • thenumberofwall collisionsofthemolecules in thecell. At least, wecanseethedifferencebetween „hard“ and „soft“ materials(elasticscatteringorcosx-distribution). • theBcforvector- andtensor-polarizedDeuterium. • Wecanincreasethetargetdensitywithrecombinedmolecules. => Bc (Dz) = 7 ±1 mT / Bc (Dzz) = 10 ±1 mT
To-do List • CalculationofBcforvector- andtensor-polarized Deuterium - Additional cryo-catcherbetween ABS and ISTC-chamber • Measurements on different surfaces: - Aluminium - Teflon - … • More measurements on a watersurface (Maybethesurfacebelowhassomeinfluence …) • Development of a newopenablestoragecellfor ANKE • Polarized Deuterium Fuel forpolarizedfusionreactors
Polarized H2 Molecules para-Deuterium • - orto-Deuterium