1 / 25

Neutron decay data are useful

Neutron decay data are useful. d ν e W u e −. u e − W d ν e. e − ν e W d u'. Many processes have the same Feynman diagram as neutron decay: Primordial element formation n + e + ↔ p + ν ' e σ ν ~ 1/ τ

thanh
Download Presentation

Neutron decay data are useful

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Neutron decay data are useful d νe W u e− u e− W d νe e−νe W d u' Many processes have the same Feynman diagram as neutron decay: Primordial element formation n + e+↔ p + ν'eσν~ 1/τ (2H, 3He, 4He, 7Li) p + e−↔ n + νeσν~ 1/τ n ↔ p + e− + ν'eτ Solar cycle p + p ↔ 2H + e+ + νe p + p + e− ↔ 2H + νe etc. ~(gA/gV)5 Neutron star formation p + e− ↔ n + νe Pion decay π−↔ π0 + e− + ν'e Neutrino detectors ν'e + p ↔ e+ + n Neutrino forward scattering νe +n↔ e− + p etc. W and Z production u' + d ↔ W−  e− + ν'e etc. … precision data of weak interaction parameters today only from neutron decay Präzisionsphysik mit Neutronen / 4. Experimente diesseits SM

  2. ILL-Millenium program calculated gains in neutron count rates Präzisionsphysik mit Neutronen / 4. Experimente diesseits SM

  3. Start-ups 2001S-DH GmbH: Neutron optics, H. Häse 2006 CASCADE GmbH : large fast n-detectors, M. Klein, C. Schmidt Präzisionsphysik mit Neutronen / 4. Experimente diesseits SM

  4. t … History of the universe: a succession of phase transitions TP NP AP FKP Präzisionsphysik mit Neutronen / 4. Experimente diesseits SM

  5. Only few Standard Model parameters in n-decay n-decay rate:τ−1= const (|gV|2 + 3|gA|2)= constGF2 |Vud|2 (1+3|λ|2) Only 2 parameters needed: CKM matrix elementVud, (GF from muon decay) ratio of c.c. λ= gA/gV … but many n-decay observables: problem is overdetermined: many tests of Standard Model Präzisionsphysik mit Neutronen / 4. Experimente diesseits SM

  6. Many derived quantities from n-decay Standard model: axial to vector coupling c.c. λ = gA/gV CKM- matrix element |Vud| unitarity test of CKM-matrix Δ = Vud2 + Vus2 + Vub2  1 = 0? weak magnetism μp−μn all ν- p, ... weak cross-sections σνp/Eν= 0.67·10−38cm2/GeV number of ν-families Nν= 2.5(6) baryonic matter in universe ρ/ρcrit = 3.3(7) % beyond Standard model: mass of right-handed boson m(WR) > 300 GeV/c2 (90% c.l.) left-right mixing angle 0.20 < ζ < 0.07 (90% c.l.) scalar weak interaction amplitudes gS tensor weak interaction amplitudes gT Fiertz interference amplitude b second class amplitudes neutrino helicity < 1? (semileptonic decays) T-viol. amplitudes ... and others Aim: measure all these parameters to the highest precision possible Präzisionsphysik mit Neutronen / 4. Experimente diesseits SM

  7. History of neutron lifetime τ best measured with stored ultracold-neutrons ('UCN', Tn ~ 1mK) . · · . · · . . . · · . . . · .· .UCN N = Noexp(– t/τ) → decay rate: τ−1 = const × |Vud|2 (1 + 3λ2) short history: neutrons 'in-beam': 1960: τ = (101030) s 1982: τ = (92511) s stored UCN:1989: τ = (8883) s 2004:τ = (885.70.8) s R. Picker, Mo Abend Präzisionsphysik mit Neutronen / 4. Experimente diesseits SM

  8. History: λ= gA/gV: • derived from β-asymmetry A: • λ=gA/gV = −1.19 ±0.02 1960 • = −1.25 ±0.02 1975 • = −1.261 ±0.004 1990 • = −1.2695±0.0039 2005 • = −1.2739±0.0015 2006 Präzisionsphysik mit Neutronen / 4. Experimente diesseits SM

  9. Unitarity tests of upper row of CKM matrix |Vud|2 + |Vus|2 + |Vub|2 = 1 −ΔStandard Model: Δ = 0 ↑0.0000 i.e. test of cos2θC + sin2θC upper row, with: Vud= 0.9717±0.0013 n Vud= 0.9740±0.0005 Nuclei Vud= 0.9728±0.0030 π Vus= 0.21960±0.0023 K Vub= 0.0036±0.0009 B upper row, combined: Δ = 0.0040 ± 0.0012 first column, with Vcd, Vtd: Δ' = 0.0015±0.0054 if Δdue to right-handed currents: phase ζ = 0.0020 ± 0.0006 Aim: all entries in CKM matrix from particle decays Präzisionsphysik mit Neutronen / 4. Experimente diesseits SM

  10. before nuclear corrections: after nuclear corrections: 1σ band→ Nuclear super-allowed 0+→0+β-transitions (plus corrections) with half life t, phase space factor f J.C. Hardy, I.S. Towner, PR C 71, 055501 (2005) (from > 100 measurements) Präzisionsphysik mit Neutronen / 4. Experimente diesseits SM

  11. new neutron lifetime measurement reestablishes unitarity when using old Vus … Δ ≈ 0 ± 0.001 Präzisionsphysik mit Neutronen / 4. Experimente diesseits SM

  12. New Vus value = by-product of ε'/ε-analysis: 2002↓↓2005 B.R. KL→πe ν, πμν reestablishes unitarity when using old τn: PDG 2006, all measurements: Δ = 0.0008 (5)ud (9)us Other strategy: assume unitarity to hold → strong-interaction physics Präzisionsphysik mit Neutronen / 4. Experimente diesseits SM

  13. e− p+ B ~Tesla planned: PERC collect charged decay products from within a long piece of cold n-guide: n-guide = source of neutron decay products: "Proton-Electron Radiation Channel" PERC • bright: ~ 106 neutron-decays/sec/m of beam • clean: under well defined conditions: • spectral distortions ≤ 10−4, background/signal ≤ 10−4, … • versatile: vary width and divergence of emerging p+, e− beam • without change of spectral properties neutron puls in long piece of n-guide Präzisionsphysik mit Neutronen / 4. Experimente diesseits SM

  14. ILL user 10m example for setup: example: B0=2T, B1=8T, B2=½T: count rates: 6104 s−1 for a continuous unpolarized n-beam; 1104 s−1 for a continuous beam polarized to 98%; 3103 s−1 for a pulsed unpolarized beam; 3102 s−1 for a pulsed beam polarized to 99.5%. beam time for ~10−4 statistical error: ½ h for continuous unpolarized, 3 h for continuous polarized, 10 h for pulsed unpolarized, 4 d for pulsed polarized Präzisionsphysik mit Neutronen / 4. Experimente diesseits SM

  15. Präzisionsphysik mit Neutronen / 4. Experimente diesseits SM

  16. θcr magnetic mirror limits beam divergence: n-guide magn. mirror→ to experiment = 'keyhole' B0 B1 B2 ~10m • example: • magnetic field: 2Tesla 8Tesla ½Tesla • gyration radius: 2mm ½mm 4mm • critical angle: 300 900 150 • beam width can be traded against beam divergence, with negligible spectral distortion Präzisionsphysik mit Neutronen / 4. Experimente diesseits SM

  17. … of variable beam divergence: guide field B0 B1 high divergence low divergence n-decay products magnetic mirror field Präzisionsphysik mit Neutronen / 4. Experimente diesseits SM

  18. cm Scale×10 cm B0=2T B1=8T B2=0.5T B0=2T B1=8T B2=0.5T ↑ n-guide ↑ n and γ e and p ↑ absorbers window frame ↑ n-guide ↑ n and γ e and p ↑ absorbers window frame neutron beamstop: • Charged neutron decay products can be guided anywhere (electro-)magnetically • Example: Präzisionsphysik mit Neutronen / 4. Experimente diesseits SM

  19. B2 e− orifice energy sensitive detector EXAMPLES a) e−spectroscopy (from pol., unpol. n's): Präzisionsphysik mit Neutronen / 4. Experimente diesseits SM

  20. b) magnetic p+, e−spectroscopy: MAGNETIC SPECTROMETER e− B2 B3 window- ↑ frame p+ γ-shielding ↑ ↑ position- sensitive detectors Fig. 6: Sketch of a magnetic spectrometer for neutron decay products installed at the end of the beam line. Präzisionsphysik mit Neutronen / 4. Experimente diesseits SM

  21. p+ ↑orifice c) aSPECT retardation spectrometer: • ↑ aSPECT Präzisionsphysik mit Neutronen / 4. Experimente diesseits SM

  22. d) Mott scattering: • MOTT SCATTERING APPARATUS e− ↑orifice test of: electron helicity He~ υe/c in hadron decay Präzisionsphysik mit Neutronen / 4. Experimente diesseits SM

  23. B Transmission profile of the absorbing frame: n-guide orifice→ Error sources thin orifice: in 1st order no edge effect • thin orifice: no angular or spectral distortion of the p+, e− beam Präzisionsphysik mit Neutronen / 4. Experimente diesseits SM

  24. 2mm 2nd order error sources of orifice: • 1. neutron beam not uniform over edge of orifice: • error 6·10−5 at Eβmaxfor 10% change of n-flux over 1cm width • 2.particles hit inner face of orifice: • solution: oblique edge angle >θ2 • 3.non-perfect absorption near edges: • error 4·10−3 × 0.1 "active edge" • N.B.: electron scattering effects can be calculated reliably to better than 10% Präzisionsphysik mit Neutronen / 4. Experimente diesseits SM

  25. b) effect of mag. mirror field B1 on p+, e−: a) CRITICAL ANGLE b) COUNT RATE 1 80 0.8 60 0.6 0 0 N c 40 N/ 0.4 20 0.2 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 B0/B1 B0/B1 c) ASYMMETRY d) EFFICIENCY 1 1.2 1 0.8 0.8 0.6 0 2 A A 0.6 A/ N 0.4 0.4 0.2 0.2 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 B0/B1 B0/B1 Präzisionsphysik mit Neutronen / 4. Experimente diesseits SM

More Related