490 likes | 607 Views
Técnicas de Processamento Imagens. Fourier 1D e 2D. Transformada de Fourier. A Transformada de Fourier Toda função pode ser escrita como um somatório de senos e cosenos A TF consiste em converter uma função em componentes senos e cosenos
E N D
Técnicas de Processamento Imagens Fourier 1D e 2D
Transformada de Fourier • A Transformada de Fourier • Toda função pode ser escrita como um somatório de senos e cosenos • A TF consiste em converter uma função em componentes senos e cosenos • Seja f(t) uma função no tempo, aplicando a FT, temos F(s) que corresponde a função no espectro (espaço de Fourier).
Uma onda quadrada pode ser expressa como uma série de senos: • A1*sin(x) + A2*sin(3x) + A3*sin(5x) + …
Transformada de Fourier (sinal contínuo) • Onde s é a função no espectro e t no tempo • Inversa Observe que estamos trabalhando com números complexos!!!
x(t) + y(t) X(f) + Y(f) Algumas propriedades da FT • Linearidade
Simetria Seja h(t) e H(f) pares da transformada de Fourier então: H(t) h(-f)
Escala no tempo e na freqüência • Escala no tempo • Escala na freqüência h(kt) 1/|k|*H(f/k) 1/|k|*h(t/k) H(kf)
Deslocamentos no tempo e na freqüência • Deslocamentos no tempo (fase) h(t-t0) H( f )e-j2ft0
Deslocamento na freqüência h(t) ej2f0 H( f -f0)
Convolução • A propriedade mais importante da FT h(t) H( f ) e g(t) G( f ) (h*g)(t) H( f )G( f ) h(t)g(t) (H * G)( f )
Conservação da energia • Teorema de Parseval
Fase e amplitude • O espaço FT pode ser visualizado diretamente através das suas componentes (real e imaginária) • Ou através da fase e amplitude do spectro
Calculando a fase e a amplitude • Amplitude é determinada pelo módulo: • seja z um número complexo definido como: z = x + yi • z = |z| = x2 + y2 • | H(f) | = Re[H(f)]2 + Im[H(f)]2 • Fase é dada por:
Transformada Discreta de Fourier • Para uma função definida como uma amostragem constante de pontos no espaço (ou tempo) pode ser utilizada a transformada de Fourier Discreta (DFT) • Seja f[] uma função (vetor) definido por N pontos sua DFT é F[]: F(u) = (1/N)(x=0:N-1)[f(x) e-j 2ux /N] f(x) = (u=0:N-1)[F(u) e j2ux /N]
DFT - shifting • Quando realizado a DFT de uma onda quadrada obtemos: Observe houve um deslocamento
DFT - shifting • A FT é centralizada na origem, mas • a DFT é centralizada em N/2 • É necessário realizar um deslocamento para corrigir o resultado.
Sub-amostragem • Time sampling too far apart • Looks like sine wave of different freq Over-sampled -- faithful representation Under-sampled (solid lines)
Transformada Rápida de Fourier FFT - Fast Fourier Transform • A DFT apresenta N2 operações • Para reduzir o custo da DFT foi desenvolvido o algoritmo da FFT. • FFT apresenta NlogN operações • É muito importante, quando N é grande • Muitas aplicações de processamento de sinais (ou imagens) em tempo real seriam impraticáveis utilizando a DFT
Transformada de Fourier 2D • Contínua • Discreta
Algoritmo 2D de 1D Compor linhas em matriz Separar em linhas Matriz A FFT 1D para cada linha Separar em colunas FFT 2D de A Matriz FFT 1D para cada coluna
f(x,y) y x Pulso / Sync 2D
Amplitude e Fase |F(u,v)| amplitude fase original F(u,v)
Combinação Linear (soma) + = + =
Translação |F(u,v)| F(u,v)
Combinando Amplitude e Fase As funções complexas podem ser decompostas em suas magnitudes e fases. f(t) pode ser escrita: f(t) = Mag{f(t)} exp[ i Phase{f(t)}] Do mesmo modo, F(w) = Mag{F(w)} exp[ i Phase{F(w)}] Com estas propriedades podemos combinar a amplitude e a fases em imagens.
Rick Linda Combinando Amplitude e Fase Pictures reconstructed using the Fourier phase of another picture Mag{Linda} Phase{Rick} Mag{Rick} Phase{Linda} The phase of the Fourier transform is much more important than the magnitude in reconstructing an image.