1 / 24

Réduction de Modèles à l’Issue de la Théorie Cinétique

Réduction de Modèles à l’Issue de la Théorie Cinétique. Francisco CHINESTA LMSP – ENSAM Paris Amine AMMAR Laboratoire de Rhéologie, INPG Grenoble. q 1. q 2. r 1. r 2. r N+1. q N. The different scales. R. Atomistic. Brownian dynamics. Kinetic theory: Fokker-Planck Stochastic.

taya
Download Presentation

Réduction de Modèles à l’Issue de la Théorie Cinétique

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Réduction de Modèles à l’Issue de la Théorie Cinétique Francisco CHINESTA LMSP – ENSAM Paris Amine AMMAR Laboratoire de Rhéologie, INPG Grenoble

  2. q1 q2 r1 r2 rN+1 qN The different scales R Atomistic Brownian dynamics • Kinetic theory: • Fokker-Planck • Stochastic

  3. Atomistic The 3 constitutive blocks:

  4. q1 q2 r1 r2 rN+1 qN Brownian dynamics Beads equilibrium usually modeled from a random motion

  5. q1 q2 r1 r2 rN+1 qN • Kinetic theory: • Fokker-Planck • Stochastic The Fokker-Planck formalism

  6. Coming back to the macroscopic scale: Stress evaluation q F q F With F & R collinear:

  7. Solving the deterministic Fokker-Planck equation Two new model reduction approaches

  8. Model Reduction based on the Karhunen-Loève decomposition Continuous: Discretization: Karhunen-Loève:

  9. Application in Computational Rheology Fokker-Planck discretisation Initial reduced approximation basis First assumption: 1 dof ! Fast simulation BUT bad results expected

  10. Enrichment based on the use of the Krylov’s subspaces: an “a priori” strategy IF IF continue The enrichment increases the number of approximation functions BUT the Karhunen-Loève decomposition reduces it

  11. 1D 300.000FEM dof ~10dof FENE Model 3D ~10 functions (1D, 2D or 3D)

  12. q1 q2 r1 r2 rN+1 qN • It is time for dreaming! For N springs, the model is defined in a 3N+3+1 dimensional space !! ~ 10 approximation functions are enough

  13. BUT How defining those high-dimensional functions ? Natural answer: with a nodal description 10 nodes = 10 function values 1D

  14. q1 q2 r1 r2 rN+1 1080 ~ presumed number ofelemental particles in the universe !! qN 1D 10 dof 10x10 dof 2D 1080 dof 80D >1000D No function can be defined in a such space from a computational point of view !! F.E.M.

  15. Advanced deterministic approaches of Multidimensional Fokker-Planck equation Separated representation and Tensor product approximation bases q1 q2 q9 Our proposal FEM GRID Computing availability ~109

  16. Example I - Projection:

  17. II - Enrichment: Only 1D interpolations and 1D integrations!

  18. q2 q1

  19. 1D/9D q1 q2 q9 809 ~ 1016 FEM dof 80x9 RM dof 2D/10D 1040 FEM dof 100.000 RM dof

  20. Solving the Stochastic representation of the Fokker-Planck equation New efficient solvers

  21. Stochastic approaches … A way for solving the Fokker-Planck equation: (Ottinger & Laso) W : Wiener random process We need tracking a large ensemble of particles and control the statistical noise!

  22. BCF Stochastique: Fokker-Planck: Brownian Configuration Fields

  23. SFS in a simple shear flow Rouge: MDF 1000 ddl / pdt a11 Bleu: BCF 100 BCF 1000 ddl / pdt Vert: Reduced BCF 100 BCF 4 ddl / pdt t The reduced approximation basis is constructed from some snapshots computed on the averaged BFC distributions

  24. Perspectives (réduction de deuxième génération) Séparation de variables ? Base commune pour les différents « configuration fields »?

More Related