html5-img
1 / 64

Time independent H o  o = E o  o

Time dependent Schr ö dinger [H o + V(t)] = i ħ /t. Time independent H o  o = E o  o. Time dependent [H o + V(t)] = i ħ /t. Harry Kroto 2004. Atoms Molecules. Basically only electronic transitions . &gt;10000 cm -1. Harry Kroto 2004.

Time independent H o  o = E o  o

E N D

Presentation Transcript

1. Time dependent Schrödinger [Ho + V(t)] = iħ/t Time independent Hoo= Eoo Time dependent [Ho + V(t)] = iħ/t Harry Kroto 2004

2. Atoms Molecules Basically only electronic transitions >10000 cm-1 Harry Kroto 2004

3. C We have to solve the Time independent problem Hoo= Eoo Harry Kroto 2004

4. Atoms Molecules Basically only electronic transitions electronic transitions E > 10000 cm-1 Vibrational transitions E = 100-10000 cm-1 Rotational transitions E = 0.1 – 100 cm-1 >10000 cm-1 Harry Kroto 2004

5. The Born-Oppenheimer Separation H = E H = Hel + Hvib + Hrot+ … Harry Kroto 2004

6. The Born-Oppenheimer Separation H = E H = Hel + Hvib + Hrot+ …  = el vib rot …  =i i Harry Kroto 2004

7. The Born-Oppenheimer Separation H = E H = Hel + Hvib + Hrot+ …  = el vib rot …  =i i E = Eel + Evib + Erot +… E= i Ei Harry Kroto 2004

8. The Born-Oppenheimer Separation H = E H = Hel + Hvib + Hrot+ …  = el vib rot …  =i i E = Eel + Evib + Erot +… E= i Ei We shall often use Dirac notation mm and m* n Harry Kroto 2004

9. Time independent Hoo= Eoo Harry Kroto 2004

10. Time independent Hoo= Eoo Stationary States mo m Harry Kroto 2004

11. Time independent Hoo= Eoo Stationary States mo m m  o Harry Kroto 2004

12. D Selection Rules Need to solve the Time Dependent Problem Harry Kroto 2004

13. Time independent Hoo= Eoo Stationary States mo m Time dependent [Ho + V(t)] = iħ/t m  o Harry Kroto 2004

14. Time independent Hoo= Eoo Stationary States mo m Time dependent [Ho + V(t)] = iħ/t V(t) = -Ee(t)e m  o Harry Kroto 2004

15. Time independent Hoo= Eoo Stationary States mo m Time dependent [Ho + V(t)] = iħ/t V(t) = -Ee(t)e Ee (t) = Eeocos2t Ee(t) Radiation field e Electric dipole moment m  o Harry Kroto 2004

16. Time independent Hoo= Eoo Stationary States mo m Time dependent [Ho + V(t)] = iħ/t V(t) = -Ee(t)e Ee (t) = Eeocos2t Ee(t) Radiation field e Electric dipole moment = mam(t)m m  o Harry Kroto 2004

17. Fermi’s Golden Rule x Io I l Harry Kroto 2004

18. Fermi’s Golden Rule x Io I l Beer Lambert Law I= Io e-l Harry Kroto 2004

19. Fermi’s Golden Rule x Io I l Beer Lambert Law I= Io e-l Harry Kroto 2004

20. Fermi’s Golden Rule x Io I l Beer Lambert Law I= Io e-l Harry Kroto 2004

21. Fermi’s Golden Rule x Io I l Beer Lambert law I= Io e-l Harry Kroto 2004

22. Fermi’s Golden Rule x Io I l Beer Lambert law I= Io e-l  is the absorption coefficient  = (83/3hc)n em2(Nm-Nn)(o-) Harry Kroto 2004

23.  = (4/3ħc) nem2 (Nm-Nn) (o-) Harry Kroto 2004

24.  = (4/3ħc) nem2 (Nm-Nn) (o-) • ① • Square of the transition moment nem2 Harry Kroto 2004

25.  = (4/3ħc) nem2 (Nm-Nn) (o-) • ① ② • Square of the transition moment nem2 • Frequency of the light  Harry Kroto 2004

26.  = (4/3ħc) nem2 (Nm-Nn) (o-) • ① ② ③ • Square of the transition moment nem2 • Frequency of the light  • Population difference (Nm- Nn) Harry Kroto 2004

27.  = (4/3ħc) nem2 (Nm-Nn) (o-) • ① ② ③ ④ • Square of the transition moment nem2 • Frequency of the light  • Population difference (Nm- Nn) • Resonance factor - Dirac delta function (0) = 1 Harry Kroto 2004

28. C Solution > Energy Levels For the H atom we shall just use the Bohr result E(n) = - R/n2 D Selection Rules n no restriction l = ±1 E Transition Frequencies E = - R[ 1/n22 – 1/n12] Harry Kroto 2004

29. Harry Kroto 2004

30. Harry Kroto 2004

31. Harry Kroto 2004

32. Harry Kroto 2004

33. Harry Kroto 2004

34. Harry Kroto 2004

35. Harry Kroto 2004

36. Harry Kroto 2004

37. Hot gas cloud –the famous Orion Nebulae At the centre is the Trapezium Cluster of very hot new stars Harry Kroto 2004

38. Collisions in the Interstellat Medium ISM In space the pressures are low Very low If n = number of molecules per cc (mainly H) then 2b = 103/n yrs per collision 3b = 1023/n2 yrs per collision Number densities are anything from n = 1-1000 Harry Kroto 2004

39. Einstein Coefficients n Bn<-m m Harry Kroto 2004

40. Einstein Coefficients n Bn<-m Bn->m m Harry Kroto 2004

41. Einstein Coefficients n Bn<-m Bn->m An->m m An->m/ Bn->m = 8h3/c 3 Harry Kroto 2004

42. Einstein Coefficients n Bn<-m Bn->m An->m m A = 1.2 x 10-37 3n em2 transitions per sec Spontaneous emission lifetime   (sec) = 1/A = 1037/3 sec Harry Kroto 2004

43.  (sec) = 1037/3   (cm-1)  (Hz) 3 (Hz3)  (sec) H (1420 MHz) 21cm 0.05 1.5x109 3x1027 1010 * H2CO rotations 1cm 1 3 x 1010 3x1031 106 CO2 vibrations 10 103 3 x 1013 3 x 1040 10-3 Na D electronic 500nm 2x104 1.5 x 1014 6 x 1044 10-7 H Lyman  100nm 105 3 x 1015 3 x 1046 10-9 Calculations assume e = 1Debye 1yr = 3 x 107 sec * magnetic dipole Harry Kroto 2004

44. Harry Kroto 2004

45. Bohr radius an = aon2 ao = 0.05 nm Harry Kroto 2004

More Related