spacetime metric deformations n.
Skip this Video
Loading SlideShow in 5 Seconds..
Download Presentation

play fullscreen
1 / 37
Download Presentation
Download Presentation


- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. SPACETIME METRIC DEFORMATIONS Cosimo Stornaiolo INFN-Sezione di Napoli MG 12 Paris 12-18 July 2009

  2. Papers D. Pugliese, Deformazioni di metriche spazio-temporali, tesi di laurea quadriennale, relatori S. Capozziello e C. Stornaiolo S. Capozziello e C. Stornaiolo, Space-Timedeformationsasextendedconformaltransformations International Journal ofGeometricMethods in ModernPhysics 5, 185-196 (2008)

  3. Introduction In GeneralRelativity, weusually deal with • Exactsolutionstodescribecosmology, blackholes, motions in the solar system, astrophysicalobjects • Approximatesolutionsto deal withgravitationalwaves, gravitomagneticeffects, cosmologicalperturbations, post-newtonianparametrization • Numericalsimulations

  4. The ignoranceof the realstructureofspacetime • Nature of dark matter and of dark energy • Unknowndistributionof (dark) matter and (dark) energy • Pioneer anomaly • Relation of the geometriesbetween the differentscales • Whichtheorydescribes best gravitation at differentscales • Alternative theories • Approximatesymmetries or complete lackofsymmetry • Spacetimeinhomogeneities • Boundaryconditions • Initialconditions

  5. Deformationtoparameterize the ignoranceof the realspacetimegeometry? Letustrytodefine a generalcovariant way to deal with the previouslistofproblems. In anarbitraryspacetime, anexactsolutionof Einstein equations, can onlydescribe in anapproximative way the realstructureof the spacetimegeometry. Ourpurposeistoencodeourignoranceof the correctspacetimegeometrybydeforming the exactsolutionwith scalar fields. Letusseehow………

  6. An exampleofgeometricaldeformations in 2D: the earthsurface • Letusconsiderthesurfaceof the earth, we can consider it as a (rotating) sphere Butthisisanapproximation

  7. The Earthisan oblate ellipsoid • Measurments indicate that the earthsurfaceisbetterdescribedbyan oblate ellipsoid Meanradius 6,371.0 km Equatorialradius 6,378.1 km Polarradius 6,356.8 km Flattening 0.0033528 • Butthisisstillanapproximation

  8. The shapeof the Geoid We can improve our measurements an find out that the shape of the earth is not exactly described by any regular solid. We call the geometrical solid representing the Earth a geoid 1. Ocean2. Ellipsoid3. Local plumb4. Continent5. Geoid

  9. An altimetricimageof the geoid

  10. Comparisonbetween the deviationsof the geoidfromanidealized oblate ellipsoid and the deviationsof the CMB from the homogeneityi.e. the departureofspacetimefromhomogeneity at the last scatteringepoch.

  11. Deformations in 2D • Itiswellknownthatall the twodimensionalmetrics are relatedbyconformaltransformations, and are alllocallyconformto the flatmetric

  12. A generalization? • The questionisifthereexistsanintrinsicand covariant way torelatesimilarlymetrics in dimensions

  13. Riemanntheorem • In ann-dimensionalmanifoldwithmetric the metrichas degreesoffreedom

  14. An attempttodefinedeformation in threedimensions In 2002 Coll, Llosa and Soler (General Relativity and Gravitation, Vol. 34, 269, 2002) showedthatanymetric in a 3D space(time) isrelatedto a constant curvature metricby the following relation

  15. Deformations in more thanthreedimensions • Question: How can we generalize the conformal transformations in 2 dimensions an Coll and coworkers deformation in 3 dimensions to more than 3 dimension spacetimes?

  16. Ourdefinitionofmetricdeformation Letusseeifwe can generalize the precedingresultpossiblyexpressing the deformations in termsof scalar fieldsasforconformaltransformations. What do wemeanbymetricdeformation? Letus first consider the decompositionof a metric in tetradvectors

  17. The metricdeformation

  18. Propertiesof the deformingmatrices • are matricesof scalar fields in spacetime, • Deformingmatrices are scalarswithrespectto coordinate transformations.

  19. Conformaltransformations A particularclassofdeformationsisgivenby whichrepresent the conformaltransformations Thisisoneof the first examplesofdeformationsknownfromliterature. Forthisreasonwe can considerdeformationsasanextensionofconformaltransformations.

  20. Exampleofconformaltransformations • Conformaltransformationsgivenby a changeofcoordinatesflat (and open) Friedmannmetrics and Einsteiin (static) universe • Conformaltransformationthatcannotbeobtainedby a changeofcoordinatesclosedFriedmannmetric

  21. More precise definitionofdeformation If the metrictensorsoftwospaces and are relatedby the relation wesaythatis the deformationof (cfr. L.P.Eisenhart, RiemannianGeometry, pag. 89)

  22. Propertiesof the deformingmatrices • They are notnecessarilyreal • They are notnecessarilycontinuos (so thatwemay associate spacetimeswithdifferenttopologies) • They are not coordinate transformations (oneshouldtransformcorrespondinglyall the covariant and contravarianttensors), i.e. they are notdiffeomorphismsof a spacetimeM toitself • They can becomposedtogive successive deformations • Theymaybesingular in some point, ifweexpecttoconstruct a solutionof the Einstein equationsfrom a Minkowskispacetime

  23. Seconddeformingmatrix

  24. Byloweringitsindexwith a Minkowskimatrixwe can decompose the first deformingmatrix

  25. Expansionof the seconddeformingmatrix Substituting in the expressionfordeformation the seconddeformingmatrixtakes the form Inserting the tetradvectorstoobtain the metricitfollowsthat (next slide)

  26. Tensorialdefinitionof the deformations Reconstructing a deformedmetricleadsto Thisis the mostgeneralrelation betweentwometrics. Thisis the third way todefine a deformation

  27. Deforming the contravariantmetric To complete the definitionof a deformationweneedtodefine the deformationof the correspondingcontravarianttensor

  28. Deformedconnections We are nowabletodefine the connections where and is a tensor

  29. Deformed Curvature tensors Finallywe can definehow the curvature tensors are deformed

  30. Einstein equationsfor the deformedspacetime in the vacuum The equations in the vacuum take the form

  31. The deformed Einstein equations in presenceofdeformedmattersources In presenceofmattersources the equationsfor the deformedmetric are of the form

  32. Some examplesofspacetimemetricdeformationsalreadypresent in literature • Conformaltransformations • Kerr-Schildmetrics • Metricperturbations: cosmologicalperturbations and gravitationalwaves

  33. Smalldeformations or gravitationalperturbations • In ourapproach the approximationisgivenby the conditions • Thisconditions are covariantforthreereasons: • 1) we are using scalar fields; • 2) thisobjects are adimensional; • 3) they are subjectonlytoLorentztransformations;

  34. Equationsforsmalldeformations

  35. The correspondingequations and gaugeconditionsfor the scalar potentials (in a flatspacetime)

  36. The meaningofgaugeconditionsfor the deformations • The gaugeconditions are no more coordinate conditions. insteadthey are restrictions in the choiceof the perturbingscalars.

  37. Discussion and Conclusions • Wehavepresented the deformationofspacetimemetricsas the correctionsonehasto introduce in the metric in orderto deal withourignoranceof the fine spacetimestructure. • The useofscalarstodefinedeformation can simplifymanyconceptualissues • As a resultweshowedthatwe can consider a theoryof no more thansix scalar potentialsgiven in a background geometry • Weshowedthatthis scalar field are suitablefor a covariantdefinitionfor the cosmologicalperturbations and alsoforgravitationalwaves • Usingdeformationswe can studycovariantly the • Inhomogeneity and backreactionproblems • Cosmologicalperturbations butalso • Gravitationalwaves in arbitraryspacetimes • Symmetry and approximatesymmetricpropertiesofspacetime • The boundary and initialconditions • The relation between GR and alternative gravitationaltheories