1 / 65

ITEP Winter School 2012, Feb 18 2012

ITEP Winter School 2012, Feb 18 2012. Quarkonium, experiment. Roman Mizuk ITEP, Moscow. BELLE Collaboration. Contents. B-factories observed CP violation in B decays. Confirmed Kobayashi-Maskawa mechanism  Nobel prize 200 8. Other highlights: many rare B decays D 0 mixing.

taima
Download Presentation

ITEP Winter School 2012, Feb 18 2012

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ITEP Winter School 2012, Feb 18 2012 Quarkonium, experiment Roman Mizuk ITEP, Moscow BELLE Collaboration

  2. Contents B-factories observed CP violation in B decays Confirmed Kobayashi-Maskawa mechanism Nobel prize 2008 Other highlights: many rare B decays D0 mixing Unexpected bonus : new exotic quarkonium(-like) states this lecture – experiment Mikhail Voloshyn – theory

  3. X(3872) CP B→Xsγ 630 Belle citation count 548 365 Phys.Rev.Lett.91262001, (2003) 9th anniversary!

  4. Outline Conventional quarkonium X(3872) 1– – family Charged states with bb pairs _

  5. Heavy quarkonium Approximately non-relativistic Approximately non-relativistic _ _ _ _ _ “hydrogen atom” of QCD Rich array of bound states

  6. Charmonium Levels M, GeV P = (–1)L+1 C = (–1)L+S S = s1 + s2 = {0, 1} J = S + L n – radial quantum number 4.50 (4415) 4.25 (4160) JPC (4040) c2(2P) 4.00 L=0 S=0 0– + c(1S), c(2S) (3770) J/ , (2S) , (4040) , (4415) 2M(D) 3.75 L=0 S=1 1– – c(2S) (2S) c2 hc c1 3.50 L=1 S=0 1+ – hc(1P) c0 0+ + 1+ + 2+ + c0(1P) c1(1P) c2(1P), c2(2P) 3.25 L=1 S=1 J/ c 3.00 L=2 S=1 1– – (3770), (4160) 2.75 (3770) = 13D1 + 0.2  23S1 n2S+1LJ 0– + 1– – 1+ – (0,1,2)++ JPC

  7. Bottomonium levels • notation : •    • subscript “c”  ”b”  

  8. Observation of J/ BNL AGS extracted 28 GeV p-beam SLAC SPEAR e+e- annihilation Mark I first 4 detector Be target Richter et al. , nb , nb p + Be → e+e- + X Ting et al. , nb Width of t E c.m.s. JPC=1– – M( e+e- )

  9. Observation of J/ Nov 1974 – revolution J/ is heavy and very narrow  smth new  Observation of 4th quark  Quarks were widely recognized as particles  Beginning of modern physics

  10. c g g c e,m,q c g e,m,q ¯ ‾ ‾ ‾ c c c Why J/ is so narrow? C-parity 2/3 1/3 DD* D*D* ~as 3 DD at threshold For J/ strong decays are suppressed so much that EM decays are competitive.

  11. Observation of  family JPC of photon  produced in e+e- collisions 1– – R = (e+e-  hadrons) / 0(e+e-  +-) 0= 42 / 3s

  12. Observation of cJ and c (2S) cJ cJ  J/ (2S) c E1 E1 M1 0– + 1– – (0,1,2)+ +

  13. cJ c – DASP, DESY (1976)– Crystall Ball, SLAC (1980) Observation of Crystal Ball: sphere with 900 NaI crystals

  14. Charmonium before B-factories 1980 – 2002 : no new charmonium states

  15. Bottomonium before B-factories Lederman 1– – (0,1,2)+ + (1S), (2S) – 1977 FNAL pA collisions e+e- colliders: DORIS, DORIS-II (DESY) CESR (Cornell) VEPP-4 (Novosibirsk) 1985 – 2008 : no new bottomonium states

  16. B-factories Data taking : 2000 – 2010 e+e– → (4S) Ecms ~ 10.6 GeV @ KEK @ SLAC

  17. Charmonium production at B factories in B decays γγfusion c(2S) c2(2P) Any quantum numbers can be produced, to be determined from angular analysis. JPC = 0±+, 2±+ double charmonium production initial state radiation OnlyJPC = 0±+ observed so far. JPC = 1– –

  18. Observation of hc(1P) CLEOc 2005 (c-Factory) (2S)  hc(1P) 0 0 1– – 1+ –

  19. QCD potential c J/ c2 (2S) Schrödinger equation one-gluon exchange, asymptotic freedom confiningpotential, “chromoelectric tube” There are other parameterizations, shapes are similar for 0.1 < R < 1 fm.

  20. State Experim Predictions of Potential Models

  21. Predictions of Potential Models M, GeV Potential models reproduce also annihilation widths J/y, y(2S)→ℓ+ℓ- hc, ccJ→ ggand radiative transitions btw. charmonia. JPC

  22. X(3872)

  23. pp collisions PRL91,262001 (2003) X(3872) was observed by Belle in B+ → K+ X(3872) (2S) → J/ψπ+π- X(3872) Confirmed by CDF, D0 and BaBar (+LHCb) Recent signals of X(3872) → J/ψπ+π- direct productiononly 16% from B PRL103,152001(2009) PRL93,162002(2004) arXiv:0809.1224 PRD 77,111101 (2008)

  24. _ expect for cc ~20 Puzzles of X(3872) _ 2003 revolution Mass above DD threshold, but very narrow M = 3871.63  0.19 MeV , Γ < 1.2 MeV (90% C.L.) M = 3871.63  0.19 MeV , Γ < 1.2 MeV (90% C.L.) X(3872) → J/ψπ+π- +- pair is produced via 0 M(+-) X(3872) is observed in isospin-violating mode Bf(XJ/ ) / Bf(XJ/ ) = 0.8  0.3 confirm even C-parity Bf(XJ/ ) / Bf(XJ/ ) = 0.21  0.06 Mass close to D*0D0 threshold: m = – 0.09  0.34 MeV Very unlikely that X(3872) is charmonium

  25. Exotic interpretations tetraquark molecule two loosely boundD mesons compact diquark-diantiquark state Maiani, Polosa, Riquer, Piccini; Ebert, Faustov, Galkin; … Tetraquark  Predictions: Charged partners of X(3872). Two neutral states ∆M = 8  3 MeV,one populate B+ decay, the other B0. Experiment: BaBar, Belle :J/+0 channel no charged partner CDF :signal shape in J/+- channel no 2nd neutral resonances Belle :production in B+ and B0 decays Tetraquarks are not supportedby any experimental evidence.

  26. Virtual state D0D00 J/+- Molecule Swanson, Close, Page; Voloshin; Kalashnikova, Nefediev; Braaten; Simonov, Danilkin ... Mass close to D*0D0 threshold: m = – 0.09  0.34 MeV _ JP = 1+ Weakly bound S-wave D*0D0 system a few fm Large isospin violation 8 MeV difference btw D*+D- and D*0D0 thresholds. _ Large production ratein ppand in B decaysadmixture ofc1(2P). _ Predicts different line shapes for J/+- and D*0D0 modes: Bound state J/+- D0D00 D*0D0

  27. PRD77,011102(2008) B+& B0D0D*0K 4.9σ 347fb-1 arXiv:0810.0358 B KD0D*0 D*→Dγ D*→D0π0 605 fb-1 Flatte vs BW similar result: 8.8σ X(3872) → D*0D0 ~2 Bf(XDD*) / Bf(XJ/) = 9.5  3.1 Shifted mass and higherwidth are in accord with molecular model

  28. Molecule (2) Bound or virtual? c1(2P) admixture? Simultaneous analysis of J/ and DD* data  Braaten, Stapleton Zhang, Meng, Zheng arXiv: 0907.3167 0901.1553 Kalashnikova, Nefediev arXiv:0907.4901 ~2 experimental difference reverses conclusion  Present statistics are insufficient to constrain theory

  29. Angular analysis CDF, BELLE  all JPC except 1++ and 2-+ are excluded cosqX MC JPC= 2-+ MC JPC=1++ cosqX cosc cosc cosql cosql cosqr cosqr

  30. Nature of binding force One pion exchange ? Coupled channel resonance ? D D c1 c1 c1 D* D*

  31. “Loose ends” _ Improve line-shape measurement for D*0D0 Super B-factories Angular analysis to discriminate JPC=1++ and 2 – + LHCb More decay channels : 00, +-c BELLE ?, LHCb, Super B-factories

  32. 1– – family

  33. c e+ e+ e+ γ • Use ISR to measure • open&hidden charm exclusive final states s =(Ecm– Eγ)2 – p2 e– e– e– c ISR at B factories • Quantum numbers of final states are fixed JPC = 1– – • Continuous ISR spectrum: • access to the whole √s interval • αemsuppression compensated by huge luminosity • comparable sensitivity to energy scan (CLEO-c, BES)

  34. e+e– → ISR J/ () +- : Y(4008,4260,4360,4660) PRL99, 142002 670/fb PRL99, 182004 550/fb PRL98, 212001 298/fb arXiv: 0808.1543 454/fb – Above DD threshold, decayto open charm?

  35. (e+e–→hadrons) R(s) = – Ruds (e+e–→μ+μ–) (4415) (4415) (4040) (4040) (3770) (3770) ψ(4160) ψ y ψ y (4160) ψ y 4325) 4360) 4008) 4008) y Y( Y( Y( Y( 4260) 4260) No evidence for Y’s → hadrons (4660) (4660) Y( Y( Y Y Durham Data Base ee is small. Since eeB(Y) is finite (is measured)  B(Y) is big X.H. Mo et al, PL B640, 182 (2006)  (Y(4260) → J/+-) > 0.508 MeV @ 90% CL Much larger than measured charmonium widths: (→ J/+-) = 0.044 ± 0.008 MeV (→ J/+-) = 0.104 ± 0.004 MeV

  36. Interpretation – hybrid → D** D 1 – c π c π PRD80, 091101R (2010) DD* hybrid ψ(4415) Y(4260) state with excited qluonicdegree of freedom – → (D*π) D hadrocharmonium predictions? charmonium embeddedinto light hadron

  37. DD DD* D*D* DDπ DD*π D(*)+s D(*)–s Λ+c Λ–c Inclusive cross-sectionis saturated byexclusive contributions

  38. Charged resonances with bb _ (1S)+- (2S)+- (3S)+- hb(1P)+- hb(2P)+- Zb(10610)+- Zb(10650)+- (5S) arXiv:1103.3419 arXiv:1110.2251

  39. Integrated Luminosity at B-factories (fb-1) asymmetric e+e- collisions > 1 ab-1 On resonance: (5S): 121 fb-1 (4S): 711 fb-1 (3S): 3 fb-1 (2S): 24 fb-1 (1S): 6 fb-1 Off reson./scan : ~100 fb-1 530 fb-1 On resonance: (4S): 433 fb-1 (3S): 30 fb-1 (2S): 14 fb-1 Off reson./scan : ~54 fb-1

  40. e+e- hadronic cross-section BaBar PRL 102, 012001 (2009) (1S) (5S) (6S) (4S) (2S) (3S) (4S) Belle took data at E=108671MэВ 2M(B) 2M(Bs) _ e+ e- ->(4S) -> BB,whereBisB+orB0 _ _ _ _ _ e+ e- -> bb ((5S)) ->B(*)B(*), B(*)B(*)p, BBpp, Bs(*)Bs(*), (1S)pp, X … study

  41. Puzzles of (5S) decays Anomalous production of (nS)+- PRD82,091106R(2010) (MeV) PRL100,112001(2008) line shape of Yb 102 (5S) Similar effect in charmonium? Y(4260) with anomalous (J/+-)  assume  Yb close to (5S) to distinguish energy scan  shapes of Rb and () different (2) 41

  42. Observation of hb(1P) & hb(2P)

  43. Trigger CLEO observed e+e- → hc+– @ ECM=4170MeV (hc+–) (J/+–) PRL107, 041803 (2011) Y(4260) Hint of rise in (hc+-) @ Y(4260) ? 4260 Y(4260)Yb search for hb(nP)+- @ (5S) 43

  44. Introduction to hb(nP) MM(+-) _ (bb) : S=0 L=1 JPC=1+- Expected mass  (Mb0 + 3 Mb1 + 5 Mb2) / 9 MHF test of hyperfine interaction For hcMHF= 0.00  0.15 MeV, expect smaller deviation for hb(nP) Previous search arXiv:1102.4565 PRD 84, 091101 BaBar 3.0 (3S) → 0 hb(1P) 44

  45. Introduction to hb(nP) MM(+-) _ (bb) : S=0 L=1 JPC=1+- Expected mass  (Mb0 + 3 Mb1 + 5 Mb2) / 9 MHF test of hyperfine interaction For hcMHF= 0.00  0.15 MeV, expect smaller deviation for hb(nP) Previous search arXiv:1102.4565 PRD 84, 091101 BaBar 3.0 (3S) → 0 hb(1P) 45

  46. (5S)  hb +- reconstruction reconstructed * * M(hb) =  Mmiss(+-) (Ec.m. – E+-)2 – p+- 2 hb → ggg, b (→ gg)  no good exclusive final states “Missing mass” (1S) hb(1P) (2S) hb(2P) (3S) 46

  47. Results 121.4 fb-1 Significance w/ systematics hb(1P) 5.5 hb(2P) 11.2 47

  48. Hyperfine splitting Deviations from CoG (Center of Gravity) of bJmasses hb(1P)(1.7  1.5) MeV/c2 hb(2P)(0.5 +1.6 ) MeV/c2 consistent with zero, as expected -1.2 Ratio of production rates spin-flip for hb(1P) = for hb(2P) no spin-flip Process with spin-flip of heavy quark is not suppressed • Mechanism of (5S)  hb(nP) +- decay violates • Heavy Quark Spin Symmetry 48

  49. Resonant structure of (5S)hb(nP) +-

  50. Resonant structure of (5S)  hb(1P)+- phase-space MC M(hb–), GeV/c2 M(hb+), GeV/c2 50

More Related