biosensors l.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Biosensors PowerPoint Presentation
Download Presentation
Biosensors

Loading in 2 Seconds...

play fullscreen
1 / 38

Biosensors - PowerPoint PPT Presentation


  • 185 Views
  • Uploaded on

Biosensors. Christopher Byrd ENPM808B University of Maryland, College Park December 4, 2007. Outline. Introduction 4 Specific Types of Biosensors Electrochemical (DNA) Carbon nanotube BioFET Whole Cell Basic functionality Benefits/Challenges Summary References. Introduction.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Biosensors' - studs


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
biosensors

Biosensors

Christopher Byrd

ENPM808B

University of Maryland, College Park

December 4, 2007

outline
Outline
  • Introduction
  • 4 Specific Types of Biosensors
    • Electrochemical (DNA)
    • Carbon nanotube
    • BioFET
    • Whole Cell
  • Basic functionality
  • Benefits/Challenges
  • Summary
  • References
introduction
Introduction
  • Biosensor:

Incorporation of a biomolecule in order to detect something

Species to be detected

(analyte)

Filter

Recognition Layer

Recognition Layer

Transducer

Electronics

Signal

Introduction

E-DNA

Carbon N-T

BioFET

Whole Cell

Summary

introduction4
Introduction
  • Biosensors ~ $3B
  • 90% → Glucose testing
  • 8% - 10% increase in industry per year

Introduction

E-DNA

Carbon N-T

BioFET

Whole Cell

Summary

electrochemical dna sensors
Electrochemical DNA Sensors
  • Harnesses specificity of DNA
  • Simple assembly
  • Customizable
  • Vast uses for small cost

Introduction

E-DNA

Carbon N-T

BioFET

Whole Cell

Summary

dna structure
DNA Structure
  • DNA structures---double helix
  • 4 complementary bases:

Adenine (A), Guanine (G),

Thymine (T), and Cytosine (C)

Introduction

E-DNA

Carbon N-T

BioFET

Whole Cell

Summary

dna specificity
DNA Specificity
  • Hydrogen bonding between base pairs
  • Stacking interaction between bases along axis of double-helix
  • Animation

Introduction

E-DNA

Carbon N-T

BioFET

Whole Cell

Summary

principles of dna biosensors
Principles of DNA biosensors
  • Nucleic acid hybridization

(Target Sequence)

(Hybridization)

(Stable dsDNA)

ssDNA (Probe)

Source: http://cswww.essex.ac.uk

Introduction

E-DNA

Carbon N-T

BioFET

Whole Cell

Summary

e dna sensor structure
E-DNA Sensor Structure

“Stem-loop”

s

Gold electrode

Introduction

E-DNA

Carbon N-T

BioFET

Whole Cell

Summary

e dna sensor structure10
E-DNA Sensor Structure

Target

“Stem-loop”

s

Gold electrode

Introduction

E-DNA

Carbon N-T

BioFET

Whole Cell

Summary

e dna sensor structure11
E-DNA Sensor Structure

(Open, extended)

(Stem-loop)

Source: Ricci et al., Langmuir,2007, 23, 6827-6834

Introduction

E-DNA

Carbon N-T

BioFET

Whole Cell

Summary

carbon nanotube biosensor
Carbon Nanotube Biosensor

Image: www.cnano-rhone-alpes.org

Introduction

E-DNA

Carbon N-T

BioFET

Whole Cell

Summary

carbon nanotube biosensor13
Carbon Nanotube Biosensor
  • One atom thick
  • One nanometer diameter
  • Ability to be functionalized
  • Electrical conductivity as high as copper, thermal conductivity as high as diamond

Introduction

E-DNA

Carbon N-T

BioFET

Whole Cell

Summary

cnt biosensor structure
CNT Biosensor Structure

Succinimidyl ester

Source: Chen et al., 2001

Introduction

E-DNA

Carbon N-T

BioFET

Whole Cell

Summary

cnt uncoated vs coated
CNT Uncoated vs. Coated

Source: Chen et al., 2001

Introduction

E-DNA

Carbon N-T

BioFET

Whole Cell

Summary

cnt biosensor signal detection
CNT Biosensor Signal Detection

Glucose

O2

Gluconic Acid

H2O2

e-

Source: Besteman et al., 2003

Introduction

E-DNA

Carbon N-T

BioFET

Whole Cell

Summary

cnt biosensor signal detection17
CNT Biosensor Signal Detection

e-

e-

e-

e-

e-

Effectively increases electrical current

Source: Besteman et al., 2003

Introduction

E-DNA

Carbon N-T

BioFET

Whole Cell

Summary

cnt biosensor results
CNT Biosensor Results

160 mM

60 mM

20 mM

0 mM

Source: Besteman et al., 2003

Introduction

E-DNA

Carbon N-T

BioFET

Whole Cell

Summary

biofet
BioFET
  • Draws upon versatility of common electronic component (Field-Effect Transistor)
  • Well understood expectations/results

Introduction

E-DNA

Carbon N-T

BioFET

Whole Cell

Summary

slide20
FET

+

-

Drain

Gate

Insulator

Source

+

+

+

+

(Not conductive enough)

(Electron Channel)

-

-

-

-

-

Introduction

E-DNA

Carbon N-T

BioFET

Whole Cell

Summary

slide21
FET

+

-

Threshold Voltage

Drain

Gate

Insulator

Source

+

+

+

+

Introduction

E-DNA

Carbon N-T

BioFET

Whole Cell

Summary

slide22
FET

+

-

Drain

Gate

Insulator

Source

+

+

+

+

+

+

+

+

-

-

-

-

-

-

-

-

-

-

-

-

-

Introduction

E-DNA

Carbon N-T

BioFET

Whole Cell

Summary

biofet23
BioFET

Source: Im et al., 2007

Introduction

E-DNA

Carbon N-T

BioFET

Whole Cell

Summary

biofet24
BioFET

Source: Im et al., 2007

Introduction

E-DNA

Carbon N-T

BioFET

Whole Cell

Summary

biofet results
BioFET Results

Gate (before)

Source: Im et al., 2007

Introduction

E-DNA

Carbon N-T

BioFET

Whole Cell

Summary

biofet results26

d

BioFET Results

Gate

(w/ complete Biomolecule)

Gate

(after etch, w/biotin)

Source: Im et al., 2007

Introduction

E-DNA

Carbon N-T

BioFET

Whole Cell

Summary

whole cell sensors
Whole Cell Sensors

Source: http://www.whatsnextnetwork.com/technology/media/cell_adhesion.jpg

Introduction

E-DNA

Carbon N-T

BioFET

Whole Cell

Summary

whole cell sensors28
Whole Cell Sensors
  • Harness normal genetic processes
  • May detect dozens of pathogens
  • Modifiable/customizable
  • Reports bioavailability
  • Temperature/pH sensitive
  • Short shelf-life

Introduction

E-DNA

Carbon N-T

BioFET

Whole Cell

Summary

whole cell sensors29
Whole Cell Sensors

Source: Daunert et al., 2000

Introduction

E-DNA

Carbon N-T

BioFET

Whole Cell

Summary

action potential biosensor
Action-Potential Biosensor

Source: Tonomura et al., 2006

Introduction

E-DNA

Carbon N-T

BioFET

Whole Cell

Summary

action potential biosensor31
Action-Potential Biosensor

(Side view)

Source: Tonomura et al., 2006

Introduction

E-DNA

Carbon N-T

BioFET

Whole Cell

Summary

action potential biosensor32
Action-Potential Biosensor

Suction

Source: Tonomura et al., 2006

Introduction

E-DNA

Carbon N-T

BioFET

Whole Cell

Summary

action potential biosensor33
Action-Potential Biosensor

Suction

Source: Tonomura et al., 2006

Introduction

E-DNA

Carbon N-T

BioFET

Whole Cell

Summary

action potential biosensor34
Action-Potential Biosensor

Source: Tonomura et al., 2006

Introduction

E-DNA

Carbon N-T

BioFET

Whole Cell

Summary

summary
Summary
  • Use of biomolecules in sensors offers:
    • Extreme sensitivity
    • Flexibility of use
    • Wide array of detection
    • Universal application

Introduction

E-DNA

Carbon N-T

BioFET

Whole Cell

Summary

summary36
Summary
  • But still maintains challenges of:
    • pH/Temperature sensitivity
    • Degradation
    • Repeatable use
  • Regardless of challenges:
    • Biosensors will permeate future society

Introduction

E-DNA

Carbon N-T

BioFET

Whole Cell

Summary

references
References
  • K McKimmie. “What’s a Biosensor, Anyway?”, Indiana Business Magazine, 2005, 49, 1:18-23.
  • N Zimmerman. “Chemical Sensors Market Still Dominating Sensors”, Materials Management in Health Care, 2006, 2, 54.
  • K Odenthal, J Gooding. “An introduction to electrochemical DNA biosensors”, Analyst, 2007, 132, 603–610.
  • S V Lemeshko, T Powdrill, Y Belosludtsev, M Hogan, “Oligonucleotides form a duplex with non-helical properties on a positively charged surface”, Nucleic Acids Res., 2001, 29, 3051–3058.
  • F Ricci, R Lai, A Heeger, K Plaxco, J Sumner. “Effect of Molecular Crowding on the Response of an Electrochemical DNA Sensor”, Langmuir,2007, 23, 6827-6834.
  • M Heller. “DNA Microarray Technology”, Annual Review of Biomedical Engineering, 2002, 4, 129-153.
  • E Boon, D Ceres, T Drummond, M Hill, J Barton, “Mutation Detection by DNA electrocatalysis at DNA-modified electrodes”, Nat. Biotechnol. 2000, 18, 1096-1100.
  • S Timur, U Anik, D Odaci, L Gorton, “Development of a microbial biosensor based on carbon nanotube (CNT) modified electrodes”, Electrochemistry Communications, 2007, 9, 1810-1815.
  • K Besteman, J Lee, F Wiertz, H Heering, C Dekker. “Enzyme-Coated Carbon Nanotubes as
  • Single-Molecule Biosensors”, Nano Letters, 2003, 3, 6: 727-730.
  • R Chen, Y Zhang, D Wang, H Dai. “Noncovalent Sidewall Functionalization of Single-Walled Carbon Nanotubes for Protein Immobilization”, J. Am. Chem. Soc., 2001, 123, 16: 3838 -3839.
  • K Balasubramanian, M Burghard. “Biosensors based on carbon nanotubes”, Anal. Bioanal. Chem., 2005, 385, 452-468.
  • Hayes & Horowitz, Student Manual for the Art of Electronics, Cambridge Univ. Press, 1989.
  • I Hyungsoon, H Xing-Jiu, G Bonsang, C Yang-Kyu. “A dielectric-modulated field-effect transistor for biosensing”, Nature Nanotechnology,2007, 2, 430 – 434.
  • D Therriault. “Filling the Gap”, Nature Nanotechnology, 2007, 2, 393 - 394.
  • S Daunert, GBarrett, J Feliciano, R Shetty, S Shrestha, W Smith-Spencer. “Genetically Engineered Whole-Cell Sensing Systems: Coupling Biological Recognition with Reporter Genes”, Chem. Rev. 2000, 100, 2705-2738.
  • T Petänen, M Romantschuk. “Measurement of bioavailability of mercury and arsenite using bacterial biosensors”, Chemosphere, 2003, 50, 409-413.
  • F Roberto, J Barnes, D Bruhn. “Evaluation of a GFP Reporter Gene Construct for Environmental Arsenic Detection.”, Talanta. 2002, 58, 1:181-188.
  • W Tonomura, R Kitazawa, T Ueyama, H Okamura, S Konishi. “Electrophysiological biosensor with Micro Channel Array for Sensing Signals from Single Cells”, IEEE Sensors, 2006, 140-143.
  • R Leois, J Rae. “Low-noise patch-clamp techniques”, Meth. Enzym. 1998, 293: 218-266.
  • [1] A Vikas, C S Pundir. “Biosensors: Future Analytical Tools”, Sensors and Transducers, 2007, 2, 935-944.
questions
Questions?

Introduction

E-DNA

Carbon N-T

BioFET

Whole Cell

Summary