Chapter 10

1 / 13

# Chapter 10 - PowerPoint PPT Presentation

Chapter 10. Rotational Kinematics and Energy (Cont.). Outline. Connections between linear and rotational quantities (1) Tangential speed (2) Centripetal acceleration and tangential acceleration Real world examples (BIO) Rolling motion Rotational kinetic energy and the moment of inertia

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.

## PowerPoint Slideshow about 'Chapter 10' - stone-kirk

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

### Chapter 10

Rotational Kinematics and Energy (Cont.)

Dr. Jie Zou PHY 1151G Department of Physics

Outline
• Connections between linear and rotational quantities
• (1) Tangential speed
• (2) Centripetal acceleration and tangential acceleration
• Real world examples (BIO)
• Rolling motion
• Rotational kinetic energy and the moment of inertia
• Conservation of energy

Dr. Jie Zou PHY 1151G Department of Physics

(1) Tangential speed
• Tangential speed v: The speed of something moving along a circular path; the direction of motion is always tangentialto the circle; SI units: m/s.
• Relation between tangential and angular speed: v = r .
• : The angular speed; it must be in rad/s.
•  is the same for every point on a rotating object; vis greater on the outside of a rotating object than inside and closer to the axis.

Dr. Jie Zou PHY 1151G Department of Physics

(2) Centripetal and tangential acceleration
• Centripetal acceleration acp:
• The acceleration due to changing direction of motion.
• Magnitude: acp = v2/r = r2; SI unit: m/s2
• Direction: Directed towards the axis of rotation
• Tangential acceleration at:
• The acceleration due to changing angular speed.
• Magnitude: at = r; SI unit: m/s2
• Direction: Tangential to the circular path

Microhematocrit centrifuge

Dr. Jie Zou PHY 1151G Department of Physics

Real world example (BIO)
• Example 10-3 The microhematocrit: In a microhematocrit centrifuge, small samples of blood are placed in heparinized capillary tubes (heparin is an anticoagulant). The tubes are rotated at 11,500 rpm, with the bottom of the tubes 9.07 cm from the axis of rotation.
• (a) Find the linear speed of the bottom of the tubes.
• (b) What is the centripetal acceleration at the bottom of the tubes?

Dr. Jie Zou PHY 1151G Department of Physics

Rolling motion
• The linear (or translational) speed of the axle of a rolling object: v = 2r /T = r = vt
• A rolling object combines rotational motion and translation motion: (a) pure rotational motion; (b) pure translational motion; (c) rolling without slipping

(a)

(b)

(c)

Example 10-6
• A car with tires of radius 32 cm drives on the highway at 55 mph. (a) What is the angular speed of the tires? (b) What is the linear speed of the top of the tires (1 mph = 0.447 m/s).

Dr. Jie Zou PHY 1151G Department of Physics

The moment of inertia plays the same role in rotational motion that mass plays in translational motion.

Rotational kinetic energy and the moment of inertia
• Rotational kinetic energy
• SI unit: J
• I: Moment of inertia (SI unit: kg·m2)
• : Angular speed (SI unit: rad/s)
• Moment of inertia, I
• I =  miri2
• SI unit: kg·m2
• Moment of inertia, I, depends on:
• Distribution of mass
• Location and orientation of the axis of rotation

Dr. Jie Zou PHY 1151G Department of Physics

Examples: moment of inertia
• (a) Use the general definition,find the moment of inertia, I, for the dumbbell-shaped object.
• (b) If the two masses are moved closer to the axis of rotation, such that each has a radius of R/2, what is I now?
• (c) If the object is rotated about one end, what is its moment of inertia, I, about this new axis of rotation?

(a)

(c)

Dr. Jie Zou PHY 1151G Department of Physics

Table 10-1 Moments of inertia for objects of various shapes

Dr. Jie Zou PHY 1151G Department of Physics

Real world examples

Dr. Jie Zou PHY 1151G Department of Physics

Application of conservation of mechanical energy to a rolling object
• Kinetic energy of rolling motion:
• The kinetic energy of a rolling object is the sum of its translational kinetic energy and its rotational kinetic energy.
• Example: An object of mass m, radius r, and moment of inertia I at the top of a ramp is released from rest and rolls without slipping to the bottom, a vertical height h below the starting point. What is the object’s speed on reaching the bottom?
Homework
• See online homework assignment on www.masteringphysics.com

Dr. Jie Zou PHY 1151G Department of Physics