270 likes | 313 Views
This article discusses the challenges and prospects of long-distance quantum communication, exploring quantum superposition, entanglement, and quantum information processing. It delves into quantum cryptographic key distribution, teleportation, entanglement swapping, and quantum memory. The text highlights experimental endeavors in entanglement purification, entangled photon distribution over long distances, and solutions to photon loss and decoherence. It also examines the requirements for achieving long-distance quantum communication through quantum repeaters and entanglement connection methods. The article concludes with recent experimental results and ongoing research efforts dedicated to advancing quantum communication technologies.
E N D
Future Challenges in Long-Distance Quantum Communication Jian-Wei Pan Hefei National Laboratory for Physical Sciences at Microscale, USTC and Physikalisches Institut der Universität Heidelberg December 15, 2005
Quantum Superposition or Classical Physics: “bit” + Quantum Physics: “qubit” Entanglement: + Quantum foundations: Bell’s inequality, quantum nonlocality… Quantum information processing: quantum communication, quantum computation, high precision measurement etc …
Why Quantum Communication? • When information is encoded in quantum states one • may outperform classical communication systems in • terms of • absolute security • efficiency • channel capacity • Because quantum information systems allow encoding • information by means of • coherent superposition of quantum states.
Qubits: Polarization of Single Photons One bit of information per photon (encoded in polarization) Qubit: Non-cloning theorem: An unknown quantum state can not be copied precisely!
Polarization Entangled Photon Pair 1-2 Bell states – maximally entangled states: Singlet: where 45-degree polarization
Quantum Cryptographic Key Distribution • Single-particle-based secret key distribution: [C. H. Bennett & G. Brassard, BB84 protocol (1984) ] • Entanglement-based secret key distribution: [A. Ekert, Phys. Rev. Lett. 67, 661 (1991). ]
Quantum Teleportation where Initial state The shared entangled pair [C.H. Bennett et al., Phys. Rev. Lett. 73, 3801 (1993)]
Entanglement Swapping [M. Zukowski et al., Phys. Rev. Lett. 71, 4287 (1993)]
Key Distribution with Single Photons [C. Kurtsiefer et al., Nature 419, 450 (2002)] achieved distance: 100km fiber-based (Toshiba Research Europe) 23km free-space (TU Munich)
Generation of Photonic Entanglement [P. G. Kwiat et al., Phys. Rev. Lett.75, 4337 (1995).]
Key Distribution with Entangled Photons Fibre:[T. Jennewein et al., Phys. Rev. Lett.84, 4729 (2000).] [D. S. Naik, et al., Phys. Rev. Lett. 84, 4733 (2000).] [W. Tittel et al., Phys. Rev. Lett. 84, 4737 (2000).] Free-space: [M. Aspelmeyer et al., Science 301, 621 (2003).] achieved distance: 1km for both fibre-based and free-space
Experimental Quantum Teleportation The setup The result Teleportation: [D. Bouwmeester & J.-W. Pan et al., Nature 390, 575 (1997)] Entanglement Swapping: [J.-W. Pan et al., Phys. Rev. Lett. 80, 3891 (1998)]
Our dream: achieving long-distance quantum communication!
Difficulties in Long-Distance Quantum Communication However,due to the noisy quantum channel (1) absorption photon loss (2) decoherence degrading entanglement quality Free-Space Distribution of Entangled Photons
Free-Space Distribution of Entangled Photons over 13km [C.-Z. Peng et al., Phys. Rev. Lett. 94, 150501 (2005)] Free-space entanglement distribution - we are working on 20km and 500km scale…
Another Solution to Photon Loss and Decoherence Entanglement swapping: solution to photon loss: [N. Gisin et al., Rev. Mod. Phys. 74, 145 (2002)] Entanglement purification: solution to decoherence [C. H. Bennett et al., Phys. Rev. Lett. 76, 722 (1996)] [D. Deutsch et al., Phys. Rev. Lett. 77, 2818 (1996)]
Generating Entangled States over Long-Distance Quantum repeaters: [H. Briegel et al., Phys. Rev. Lett. 81, 5932(1998)] • Require • entanglement swapping with high precision • entanglement purification with high precision • quantum memory
Experimental Entanglement Purification and Swapping Before purification, F=3/4 After purification, F=13/14 [J.-W. Pan et al., Nature 410, 1067 (2001)] [J.-W. Pan et al., Nature 421, 721 (2003)] [J.-W. Pan et al., Nature 423, 417 (2003)]
Drawback in Former Experiments • Probabilistic entangled photon source • Probabilistic entanglement purification • Bad weather Quantum memory • In N -stage realization, the cost of resource • is proportional to • With the help of quantum memory, the total cost • isthen
Solution with Atomic Ensembles Storage of light in atomic ensembles [C. Liu et al., Nature 409, 490 (2001)] [D. F. Phillips et al., Phys. Rev. Lett. 86, 783 (2001)] motivate Storage of single-photon states in atomic ensembles [L.-M. Duan et al., Nature 414, 413 (2001)]
Entanglement Generation Maximally entangled in the number basis!
Entanglement Connection • Steps: • Apply a reverse read laser pulse to transfer • atomic excitation to optical exc. • 2.Succeeds if D1 or D2 registers one photon • 3.Fails otherwise, and repeat every step from entanglement generation
The most recent experiment results • Observation of Stokes and anti-Stokes photon • Harvard: M. D. Lukin… • [C. H. Van der Wal et al., Science 301, 196 (2003)] • Caltech: H. J. Kimble… • [A. Kuzmich et al., Nature 423, 731 (2003)] • Gatech: A. Kuzmich… • [D. N. Matsukevich et al., Science 306, 663 (2004)] • Heidelberg: J.-W. Pan … • long-life time quantum memory • [S. Chen et al., in preparation for Phys. Rev. Lett.] • working on a phase insensitive scheme… • Synchronization of two independent lasers • USTC: J.-W. Pan, J. Zhang and Z.-Y. Wei … • [T. Yang et al., submitted to Phys. Rev. Lett. (2005)]
+ |Photons> |Atoms> Powerful Quantum Superposition Promising Long-Distance Quantum Communication