1 / 38

Astronomy Day Three

Astronomy Day Three. Radiation, E-M Spectrum, Black Body Radiation, Doppler Effect. Types of Ionizing Radiation. Alpha particles  einstein. e-. Beta particles . --------. Gamma rays . e-. proton. electron. neutron. PENETRATING ABILITY. -. +. +. g. b. a. SHIELDING.

skyler
Download Presentation

Astronomy Day Three

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Astronomy Day Three Radiation, E-M Spectrum, Black Body Radiation, Doppler Effect

  2. Types of Ionizing Radiation Alpha particles einstein e- Beta particles  -------- Gamma rays  e- proton electron neutron

  3. PENETRATING ABILITY - + + g b a

  4. SHIELDING CONCRETE ALPHA BETA GAMA WOOD Paper

  5. Light, a summary • Light travels at a speed of 300,000,000 meters per second • Any light traveling that is detected will be traveling at 3 x 108 meters per second

  6. Light, a summary • Light travels at a speed of 300,000,000 meters per second • Any light traveling that is detected will be traveling at 3 x 108 meters per second. • This was calculated long before it was found experimentally.

  7. Light, a summary 1. Light travels at a speed of 300,000,000 meters per second • Any light traveling that is detected will be traveling at 3 x 108 meters per second. • This was calculated long before it was found experimentally. • Light is a "ray", "wave", "radiation", "particle" and probably more than anything else, it is a disturbance in the fabric of space itself.

  8. Light, a summary 1. Light travels at a speed of 300,000,000 meters per second • Any light traveling that is detected will be traveling at 3 x 108 meters per second. • This was calculated long before it was found experimentally. • Light is a "ray", "wave", "radiation", "particle" and probably more than anything else, it is a disturbance in the fabric of space itself. • A light wave has a wavelength, which is how long the wave is. • A light wave has a frequency, which is how many waves pass a certain point each second (Hz) • A light wave has a speed, which is always 3 x 108 meters per second. d. The wavelength x frequency = velocity.

  9. More energy will produce shorter wavelengths of light.

  10. A "ray" of light is passing by. It has a 6.9 x 1014 Hz. What can we know about this light?

  11. A "ray" of light is passing by. It has a 6.9 x 1014 Hz. What can we know about this light? Speed? Wavelength? Location on E-M spectrum?

  12. A "ray" of light is passing by. It has a 6.9 x 1014 Hz. What can we know about this light? Speed? 3 x 108 meters per second. Always. Wavelength? 3 x 108 = 6.9 x 1014 • wavelength, So the wavelength = 3 x 108 ÷ 6.9 x 1014 , or 4.34 x 10-5 meters Location on E-M spectrum? Visible. Blue.

  13. KLIN radio (1,400 on your dial) has a frequency of 1,400,000 Hz. What is the wavelength of its signal?

  14. The blackbody radiation curve will show the temperature of an object, based on where the peak of the curve is.

  15. Our Sun has a temperature of about 6,000 K, why is that significant, based upon the location of the visible light area of the spectrum?

  16. The Doppler effect is when the wavelength of an energy source is apparently changing, based upon the changing location of source or the observer.

  17. The Doppler effect is when the wavelength or speed of an energy source is apparently changing, based upon the changing location of source or the observer. Sound of engine will seem lower Sound of engine will seem higher 45 mph

  18. Show Doppler effect animation here http://www.lon-capa.org/~mmp/applist/doppler/d.htm

  19. Airplane is flying at 400 m/s, and bullet shoots ahead at 400 m/s. What is the speed and direction of the bullet?

  20. Airplane is flying at 400 m/s, and bullet shoots ahead at 400 m/s. What is the speed and direction of the bullet? Straight ahead at 800 meters per second.

  21. Both airplanes are flying at 400 m/s, and the lead airplane shoots straight back, with a bullet that has a speed of 400 m/s. What is the speed and direction of the bullet?

  22. Both airplanes are flying at 400 m/s, and the lead airplane shoots straight back, with a bullet that has a speed of 400 m/s. What is the speed and direction of the bullet? It will have a ground velocity of zero. It will fall straight down.

  23. Both airplanes are flying at 400 m/s. Will the sound of plane "a" be higher, lower, or the same as plane "b", to the pilot of plane "b"? a b

  24. Both airplanes are flying at 400 m/s. Will the sound of plane "a" be higher, lower, or the same as plane "b", to the person on the ground? a b

  25. Both airplanes are flying at 400 m/s. Will the sound of plane "a" be higher, lower, or the same as plane "b", to the person on the ground? "a" will be higher, "b" will be lower. a b

  26. a b Speed is 0 c Speed is 1/4 c Spaceship "b" shoots a "photon torpedo" at "a". What will be the speed of the "photon torpedo" when it reaches "a"?

  27. a b Speed is 0 c Speed is 1/4 c Spaceship "b" shoots a "photon torpedo" at "a". What will be the speed of the "photon torpedo" when it reaches "a"? It MUST be 300,000,000 meters per second. ALWAYS

  28. Both spacecraft are moving at great velocity from left to right. Which will appear "blueshifted" to Albert? Which will appear "redshifted" to Albert? What color do they appear to each other? a b Speed is 1/4 c Speed is 1/4 c

  29. Both spacecraft are moving at great velocity from left to right. Which will appear "blueshifted" to Albert? "a" Which will appear "redshifted" to Albert? "b" What color do they appear to each other? Still green. a b Speed is 1/4 c Speed is 1/4 c

  30. Self-Test: True or False, on page 80 1-15, just the evens Self-Test: Fill in the blank, on page 80 1-15, just the odds AND THEN DO ONE OF THE FOLOWING Problems on page 81 Problems 1 and 2 OR Collaborative Exercise Exercise one on page 82

  31. Light, radio, ultraviolet and gamma rays are all forms of _________ • Sound waves cannot travel through space, but electromagnetic waves can, because space is a _____________ • All electromagnetic waves travel at _________________________ m/s • The waves with the shortest wavelengths are _________________________ and the longest types of waves are the ___________________________. • A perfect blackbody will release (less)(same)(more) radiation than it (makes)(reflects)(absorbs). • The frequency of blackbody radiation is related to ______________________. • Objects moving away form an observer appear to be more ________ in color, while object coming towards an observer appear to be more_____ in color. • A radio wave is (faster)(slower)(same) as the speed of a gamma ray. • The ___________________ is the distance between two wave crests. • When a charged particle moves through space, information about this motion is transmitted by means of its changing ____________ and ___________ fields. • Light with a wavelength of 700 nm is perceived to be __________________ in color. • A word that means something cannot be seen through is ___________________. • The lowest possible temperature is _______K. Water boils at _________K, at standard atmospheric pressure. • Because the Sun emits its peak amount of radiation at about 480 nm, its temperature must be about _______K. • Something is emitting X-rays. Its temperature is very (low)(cool)(hot)(smokin’) • What is so special about “c”? • What is the speed of a wave, moving through water, with a frequency of 256 Hz, and a wavelength of 5.77 meters? • KLIN radio broadcasts at a frequency of 1,400,000 Hz. How long are the radio waves?

  32. Light, radio, ultraviolet and gamma rays are all forms of ELECTROMAGNETIC RADIATION • Sound waves cannot travel through space, but electromagnetic waves can, because space is a VACUUM • All electromagnetic waves travel at 3.0 X 108 m/s • The waves with the shortest wavelengths are _GAMMA__ and the longest types of waves are the _RADIO WAVES_. • A perfect blackbody will release (less)(SAME)(more) radiation than it (makes)(reflects)(ABSORBS). • The frequency of blackbody radiation is related to _TEMPERATURE__. • Objects moving away form an observer appear to be more _RED_ in color, while object coming towards an observer appear to be more_BLUE_ in color. • A radio wave is (faster)(slower)(SAME) as the speed of a gamma ray. • The _WAVELENGTH_ is the distance between two wave crests. • When a charged particle moves through space, information about this motion is transmitted by means of its changing ELECTRIC and MAGNETIC fields. • Light with a wavelength of 700 nm is perceived to be _RED_ in color. • A word that means something cannot be seen through is _OPAQUE__. • The lowest possible temperature is _0K____. Water boils at _373 K, at standard atmospheric pressure. • Because the Sun emits its peak amount of radiation at about 480 nm, its temperature must be about 6,000 K. • Something is emitting X-rays. Its temperature is very (low)(cool)(HOT)(smokin’) • What is so special about “c”? THIS IS THE UNCHANGING SPEED OF LIGHT • What is the speed of a wave, moving through water, with a frequency of 256.0 Hz, and a wavelength of 5.77 meters? • 256.0 X 5.77 = 1,477.12 m/s • 18. KLIN radio broadcasts at a frequency of 1,400,000 Hz. How long are the radio waves? • 300,000,000 ÷1,400,000 Hz = 214.3 meters

  33. Page 80 True and False (evens) False, sound is not electromagnetic False, interference is when crests and troughs collide True. They all travel a 300,000 kilometers per second False. Gamma radiation has the shortest wavelength of all True. The exact amount of radiation that goes in will also come out True. The higher the temperature, the higher the frequency True. Doppler works for everything that is a wave.

  34. Page 80 Fill in Blank (Odds) 300,000 kilometers per second, or 300,000,000 meters per second Frequency Electrical and Magnetic 700 nm would be red Heat 273 Kelvin (not degrees) The object that is 1,200 K will emit twice as much energy as an object that is 1,000 K 15. Blue

  35. 1. Wavelength is 5.77 meters Frequency is 256 cycles per second Speed is 5.77 x 256 = 1,480 meters per second 2. Frequency is 100 MHz , or 1 x 108 / second Velocity is 3 x 108 meters/second Wavelength is ( 3 x 108 meters/second)÷(1 x 108 / second) = 3 meters

More Related