1 / 35

Transmission power control techniques for wireless sensor networks 无线传感器网络的传输能量控制协议

Transmission power control techniques for wireless sensor networks 无线传感器网络的传输能量控制协议. 摘要. 无线传感器网络,通信是最消耗能量的部分。通过采用传输能量控制协议 TCP 可以显著的减少能耗。该协议通过动态的调整传输能量以达到降低能耗的目的。本文提出了两种用于 WSN 的 TPC 技术。本文在实验中将该协议与 B-MAC 相对比。主要比较了在以下三种情况下不同协议的不同表现。分别是:节点间不同的传输距离,节点间发生同时传输和移动结点这三种情况。.

Download Presentation

Transmission power control techniques for wireless sensor networks 无线传感器网络的传输能量控制协议

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Transmission power control techniques for wireless sensor networks 无线传感器网络的传输能量控制协议

  2. 摘要 无线传感器网络,通信是最消耗能量的部分。通过采用传输能量控制协议TCP可以显著的减少能耗。该协议通过动态的调整传输能量以达到降低能耗的目的。本文提出了两种用于WSN的TPC技术。本文在实验中将该协议与B-MAC相对比。主要比较了在以下三种情况下不同协议的不同表现。分别是:节点间不同的传输距离,节点间发生同时传输和移动结点这三种情况。 Communication is usually the most energy-consuming event in Wireless Sensor Networks (WSNs). One way to significantly reduce energy consumption is applying transmission power control (TPC) techniques to dynamically adjust the transmission power. This article presents two new TPC techniques for WSNs. The experimental evaluation compares the performance of the TCP techniques with B-MAC, the standard MAC protocol of the Mica 2 platform. These experiments take into account different distances among nodes, concurrent transmissions and node mobility. Keywords: Wireless sensor networks; Transmission power control; Medium access control; Energy consumption

  3. 简介 无线传感器网络是移动自组织网络的一种,包括了大量的传感器结点,结点由处理器,存储器,电池,传感设备和收发器组成。这些结点发送监测数据到控制结点(AP),该结点将数据转发给用户。与传统的自组织网络不同,由于结点大多是分布在恶劣的环境,所以不可能更换电池或对电池充电。因此,保存能量就是WSN的一个关键问题。 Wireless sensor networks (WSNs) are a subclass of mobile ad hoc networks (MANETs), and consist of a large number of sensor nodes, composed of processor, memory, battery, sensor devices and transceiver. These nodes send the monitoring data to an access point (AP), which forwards them to the users [1]. Unlike traditional ad hoc networks, in general, it is not possible to replace or recharge batteries due to the number of nodes deployed or inhospitable environmental conditions. Hence, energy conservation is a critical factor in WSNs.

  4. 针对MANET设计的许多协议,由于对硬件和能耗的要求太高,因此并不适用于WSN,尽管他们能处理相对多的数据。WSN的严格限制,使得协议设计的能耗越低越好。介质访问控制协议(MAC),调整收发器的参数和网络的拓扑结构,以减少能耗。收发器的一个重要参数就是传输能量。针对MANET设计的许多协议,由于对硬件和能耗的要求太高,因此并不适用于WSN,尽管他们能处理相对多的数据。WSN的严格限制,使得协议设计的能耗越低越好。介质访问控制协议(MAC),调整收发器的参数和网络的拓扑结构,以减少能耗。收发器的一个重要参数就是传输能量。 Severe hardware and energy constraints preclude the use of protocols developed for MANETs, which comparatively possess more resources. The strict requirements of WSNs force networking protocols to be as much energy-efficient as possible. Medium access control (MAC) protocols, for example, modify transceiver parameters and the topology of the network in order to reduce energy consumption. One of the transceiver’s parameters is the transmission power.

  5. 传输能量控制(TCP)技术在很多方面提高了网络的性能。首先,能量控制技术提高了数据链接的可靠性。MAC协议检测链路的可靠性,当检测到可靠性低于某个阈值时,就增加传输能量,提高成功栓数数据的可能性。第二,只有真正需要共享相同空间的结点才会竞争,以访问传输介质,减少了网络中发生碰撞的数目。这提高了网络的可用性,减少了延时。最后,通过采用更高的传输能量,物理层可以用更高的波特率对信号进行调制和编码,在网络负担越来越重时,提高了带宽。传输能量控制(TCP)技术在很多方面提高了网络的性能。首先,能量控制技术提高了数据链接的可靠性。MAC协议检测链路的可靠性,当检测到可靠性低于某个阈值时,就增加传输能量,提高成功栓数数据的可能性。第二,只有真正需要共享相同空间的结点才会竞争,以访问传输介质,减少了网络中发生碰撞的数目。这提高了网络的可用性,减少了延时。最后,通过采用更高的传输能量,物理层可以用更高的波特率对信号进行调制和编码,在网络负担越来越重时,提高了带宽。 Transmission Power Control (TPC) techniques improve the performance of the network in several aspects. First, power control techniques improve the reliability of a link. Upon detecting that link reliability is below a certain threshold, the MAC protocol increases the transmission power, improving the probability of successful data transmissions [2–5]. Second, only nodes which really must share the same space will contend to access the medium, decreasing the amount of collisions in the network. This enhances network utilization, lowers latency times and reduces the probability of hidden and exposed terminals [5]. Finally, by using a higher transmission power, the physical layer can use modulation and coding schemes with a higher bit/baud ratio [6,7], increasing the bandwidth in the presence of heavy workloads.

  6. 本文提出了两种用于WSN的传输能量控制协议,可以被包含进现存的任何MAC协议。第一个是Hybrid,通过在有效的传输能量上重复一个封闭的控制环路,以保持目标连接的质量,并且计算理想的传输能量。第二个是AEWMA,通过计算来判断理想的传输能量,计算的依据是:接收能量,发送能量和平均的噪声。在Mica 2平台上所做的试验,通过能量和吞吐量这些参数来评价协议的性能。分别在室内和室外两种环境中做了试验。 接下来的几部分是这样安排的:第二部分,总结了原来的TPC技术;第三部分,详细说明本文提出的方法;第四部分是不同协议在Mica平台上的试验;第五部分,针对不同情况下的试验结果进行评价;最后是结论部分和对未来工作的展望。 In this article we propose two transmission power control protocols for WSNs, which can be embedded into any existing MAC protocol. The first, called Hybrid, calculates the ideal transmission power using a closed control loop that iterates over the available transmissions powers in order to maintain a target link quality. The second, called AEWMA, employs calculations to determine the ideal transmission power based on the reception power, transmission power and average noise. Due to their simplicity, those protocols can also be applied to more resourceful networks. Experiments carried out in the Mica 2 platform show the efficiency of the protocols, considering parameters such as energy and throughput. The experiments took place in indoor and outdoor environments.

  7. 2.相关工作 Gomez 和 Campbell 分析了在多跳距的WSN中控制传输能量的优点。说明通过对每一个链接的范围进行调整可以获得比在整个范围内进行调整更好的性能,大约可以使性能提高50%,因此我们应该对每一个链接的范围进行合理的调整。 Gomez and Campbell analyzed the benefits of transmission power control in wireless multi-hop networks [2]. The authors showed that per-link range adjustments outperform global range transmission adjustments by 50%. Thus, instead of globally defining a transmission range that keeps the network connected, wireless networks should adjust transmission ranges on each link.

  8. Ammari 和 Das 提出了一种分析模型,估计传输能量如何影响延时和WSN中的能耗。作者指出,通过增加每一跳的距离,端对端延时会减少,但是以更高的能耗为代价。减少跳距,可以减少能耗,但是延时又会增加,因为需要更多的跳完成数据的传输。作者因此提出了多种服务质量(QoS)的评判标准。 Ammari and Das developed analytical models to evaluate how the transmission power affects latency and energy consumption in WSNs [12]. The authors showed that, by increasing the distance traveled at each hop, the end-to-end latency decreases at the cost of a higher energy consumption. For a small distance per hop, however, less energy is consumed, but the latency increases as more hops must be traversed. The authors then proposed the creation of quality of service (QoS) classes with different latency and energy guarantees based on the transmission power employed on the communication.

  9. 3.TPC技术 这一部分描述了一种新的TPC技术。第一个是Hybrid.第二个是AEWMA。这两个技术都可以被用于现有的MAC中,因为他们实现起来都很简单,即使是在环境条件很严格的情况下。下文中提到的理想传输能量是指能成功从一个节点向另一个节点传输消息所需要的最低的能量级。 In this section we describe the new TPC techniques. The first, called Hybrid, calculates the ideal transmission power using a closed control loop that iterates over the available transmissions powers in order to maintain a target link quality. The second, called AEWMA, employs calculations to determine the ideal transmission power based on the reception power, transmission power and average noise. These techniques can be deployed on any existing MAC, since they are simple enough to execute in restricted environments. In the following, the term “ideal transmission power” is defined as the lowest power level able to successfully transmit messages from a node to another.

  10. 3.1 Hybrid方法 可以通过连续的优化确定理想的传输能量。在Mica 2试验平台上收发器只有有限的几个允许使用的传输能量。例如,又22个不同的能量级,每一级之间间隔为1dBm。 该算法分为两个过程,第一个过程对应于程序的第8-14行,用以判断理想的传输能量,第二个过程处理介质的变换。过程如下:第一个过程开始时将传输能量设置为收发器允许的能量的最大值。一个想要判断理想传输能量的节点发送一个能量询问信息MPQ,该信息包含在数据包中,询问现在的理想传输能量并且等待确认数据包ACK。如果接收被确认,收发器就理想的能量级降低一级,然后再发送一个MPQ消息,并包含在下一个数据包中。当MPQ消息没有被确认,收发器就认为理想的传输能量已经找到,进入到第二个过程。 The ideal transmission power can be determined using successive refinements. Transceivers have a limited number of allowed transmission powers. In the Mica 2 platform, for instance, there are 22 different levels, separated by roughly 1 dBm [23].

  11. Algorithm shows the operation of the algorithm, which is described below. It operates in two phases, where the first phase (lines 8–14 of the algorithm) determines the ideal transmission power, while the second phase copes with medium changes. The algorithm works as follows. The first phase starts with the transmission power set to the maximum value allowed by the transceiver. A node wishing to determine the ideal transmission power sends a power query message (MPQ) piggy-backed in data packets at the “current” ideal transmission power and waits for an acknowledgment (ACK) packet. If the reception is confirmed, the transmitter decreases the ideal transmission power by one level, and sends another MPQ message on the next data packet. When a MPQ message is not acknowledged (lines 22–28), the transmitter assumes that the ideal transmission power was found, triggering the second phase.

  12. 第二个过程用ACK确认信息调节传输能量。如果几个连续的传输没有被确认(美誉被确认的消息数目成为增加阈值,Li),理想的传输能量会被增加一级。如果连续几个信息被成功的接收,则能量级就要降低,被成功接收的消息的数目是Ld。必须要根据应用中的吞吐量设置LI和Ld的值,避免在吞吐量过低时没有及时的相应和吞吐量高时,过早的响应。第二个过程用ACK确认信息调节传输能量。如果几个连续的传输没有被确认(美誉被确认的消息数目成为增加阈值,Li),理想的传输能量会被增加一级。如果连续几个信息被成功的接收,则能量级就要降低,被成功接收的消息的数目是Ld。必须要根据应用中的吞吐量设置LI和Ld的值,避免在吞吐量过低时没有及时的相应和吞吐量高时,过早的响应。 The second phase of the algorithm (lines 14–21 and 22–28) uses ACKs to adjust the transmission power as follows. If a number of consecutive transmissions are not acknowledged (this number is called the increase threshold level, or LI), the ideal transmission power is increased by one level. Since the noise can also decrease due to environmental changes, communication can also improve, thus the transmission power is lowered if a certain number of consecutive messages are successfully received (the decrease threshold level, or LD). The values of LI and LD must be set up according to the throughput of the application, avoiding a late reaction when the throughput is low and an early reaction when the throughput is high.

  13. 开始的试验中,节点采用的能量非常接近于平均的噪声能量,因此减少了正确接收的可能性。为了避免这种情况的发生,采用等式4保证传输能量总是高于平均的噪声能量。当数据包接收时能量接近平均噪声能量时,接收端通知发送端,传输能量必须要增加一级(6,7行),通过在ACK中增加一个特别的比特来实现,当ACK到达时,发送端增加传输能量(8-11行)。开始的试验中,节点采用的能量非常接近于平均的噪声能量,因此减少了正确接收的可能性。为了避免这种情况的发生,采用等式4保证传输能量总是高于平均的噪声能量。当数据包接收时能量接近平均噪声能量时,接收端通知发送端,传输能量必须要增加一级(6,7行),通过在ACK中增加一个特别的比特来实现,当ACK到达时,发送端增加传输能量(8-11行)。 Initial experiments showed that the method presented fluctuations on the transmitted power [24]. Nodes used a transmission power too close to the average noise, thus reducing the probability of a correct reception. In order to avoid this, we apply Eq. (4) of the AEWMA method, shown in Section 3.2, to guarantee a transmission power that is lways above the average noise by a certain threshold. henever a packet arrives at a reception power oo close to the average noise, the receiver notifies he sender that the transmission power must be ncreased by one level (lines 6 and 7) using a special it on the ACK. Upon the arrival of the ACK, the ender increases the transmission power by one level (nes 8–11).

  14. 3.2 AEWMA方法 考虑到理想传输能量可以由一个计算信号衰减的函数得到。该函数必须满足以下的条件。公式中涉及到一个发送节点A和一个收节点B。 The second method takes into account that ideal ransmission power can be calculated as a function f signal attenuation, and must satisfy the following onditions2 [5]. The formulas refer to a sender, node A and to a receiver, node B. 传输能量必须在收发器的能量范围内: 传输能量必须补偿信号从发送端到接收端的传播过程中的衰减,保证接收到的信号强度高于无线点波被感知到的最小值(RXthreshold).如果接收到的能量低于(RXthreshold).节点就不能对消息进行解码。信号的衰减(GA!B) 由下式计算: 因此理想的传输能量必须满足以下等式:

  15. 另一个影响通信的因素是背景噪声。因此,为了从噪声中将信号区分出来,接收时数据的能量必须高于噪声的能量级(NB),即信噪比必须高于某一个阈值SNRthreshold,即下面的的不等式:另一个影响通信的因素是背景噪声。因此,为了从噪声中将信号区分出来,接收时数据的能量必须高于噪声的能量级(NB),即信噪比必须高于某一个阈值SNRthreshold,即下面的的不等式: 总之,理想的传输能量必须同时满足(3)(4)两式,如下式: AEWMA方法用(5)计算下一次传输时理想的传输能量。节点在没有信息传输时间隔的对信号进行采样,以确定背景噪声的强度(NB).

  16. 4.TPC技术的实现 由于存储器是WSN中最稀缺的资源之一,我们考察每一种方法中的存储量,包括B-MAC,Hybri和AEWMA方法。其中B-MAC占用241字节,Hybrid需要353字节,AEWMA需要393字节。对以存储资源的消耗大多数来源于,相邻节点间需要存储路由信息,通过这些信息来计算传输能量。没一张路由表包含了20个节点的信息,即允许每个节点与20个相邻节点通信。 比其存储数据所消耗的能量,传输数据消耗的能量则更多。因此我们倾向于减少传输数据的字节数,当然这是以牺牲存储器资源和处理器效率为代价的,因为存储器和处理器需要记忆和处理更多的信息来明确路径,减少节点间所交换的信息数量。诸如ACK等数据包,需要额外的增加数据包的大小,共需增加5个字节的长度,其中2个字节是接收端的地址,2个字节是发送端的地址,一个字节是理想传输能量大小。经过一系列的试验我们确定了参数的设置如下: SNRthreshold =10 dBm Rxthreshold = -85 dBm. 对Hybrid方法:LI =1;LD=8. a的设置如5.1段所示

  17. 5.评价 这一部分我们主要考察两个指标:平均传输能量和平均传输率。将新提出的TPC协议与B-MAC,相比较。B-MAC分别运行在5 dBm 和B-MAC(0 dBm)两种模式下。当能俩增益为5 dBm 时,显然这么高的传输能量可以保证传输的质量和成功传输数据包的比例。0 dBm则是无线电波默认的能量值,被应用于大多数的情况下。

  18. 5.1 在EWMA协议中Alpha值的选择 AEWMA方法性能的优劣,很大程度上依赖于Alpha值的选择。我们分别在室内和室外做了多次试验,来选择每种环境下最适合的Alpha值。为了调高运算速度,我们选择的Alpha值必须是下面这种形式: 我们用0.03125,0.125,0.25和0.5这几个值。注意到如果值选择的过大,会增加信号的波动,因为这回使最近一次的测量值在计算中占的权重过大。另一方面,值选的过小,所需的时间就会很长,即需要很长的反应时间。考虑到这些方面,我们不会选择大于=0.5和小于=0.03的值

  19. 室外: 我们对4个不同的值进行估计,对每一个值,使节点间的距离依次又5米增加到20米。每次增加5米。图2描述的是平均传输能量。取0.03时,性能较差,接近于5dB的增益。 平均传输率,不同的参数表现相似,都能达到97%的传输比例。=0.03时,平均传输率比其他值低3%,原因在于其反应时间过长,造成了数据包的丢失。通过对这两个标准的考察,克制取0.125和0.25时,WSN可以得到更好的性能。

  20. 室内: 在这种情况下,我们把节点放在空走廊的地板上。我们将测试距离分别设置为2.5米,5米,7.5米和10米。结果如图3所示。由于空间发内较小,所以各种方法的表现差异不大。 上一部分是讨论了不同环境下,如何选择合适的值,接下来将详细叙述每种情况下实验的具体过程,并对试验结构进行对比和分析。

  21. 5.2室外: 选择两个节点,一个发送,一个接收,他们之间的距离又5米一次增较到20米。离地高度为71厘米,发送端每秒发送4个数据包,总共发送1000个数据包。我们选取=0.25和0.125这两个值下的AEWMA协议进行研究。平均传输率如图4所示。 B-MAC (5dB)在5米,10米和15米时都有高达97%的传送率,20米时明显下降到75%。而AEWMA协议在四种距离下都与高达93%传送率,在20米时,它的性能比其他方法都优秀,因此远距离传输时,AEWMA协议性能更佳。从图中还可以看出=0.125比=0.25,性能更好。

  22. 图5描述了各种协议的平均传输能量 从图中可以看出当距离大于15米时,所有的TPC协议的传输能量都大于0dB,这就解释了为什么B-MAC(0dB)时,平均传输率会显著下降,因为没有足够的能量来传输数据。

More Related