1 / 55

Grzegorz P. Karwasz , Kamil Fedus Institute of Physics

Electron (and positron) scattering cross sections for low temperature plasmas : experimental and semiempirical. Grzegorz P. Karwasz , Kamil Fedus Institute of Physics Faculty of Physics, Astronomy and Applied Informatics, University Nicolaus Copernicus , 87100 Torun, Poland.

sikorae
Download Presentation

Grzegorz P. Karwasz , Kamil Fedus Institute of Physics

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Electron (and positron) scattering cross sectionsfor low temperature plasmas:experimental and semiempirical Grzegorz P. Karwasz, Kamil Fedus Institute of Physics Faculty of Physics, Astronomy and Applied Informatics, University Nicolaus Copernicus , 87100 Torun, Poland IAEA Experimental Network Meeting, Wien, 19-21.11.2018

  2. Plasma temperature ← integral cross sections Ramsauer minimum (zero in s-wave) V. Godyak, Sendai 2006

  3. The ITER Tokamak Be h=29 m W R=6 m Credit: prof. D. J. Campbell (2014)

  4. Rationale: edge and divertor plasma Guillemaut et al. Nucl.Fusion 54 (2014) 093012

  5. Rationale: electron T and power irradiated Electron temperature during three points of density ramp: good agreement Power irradiated (0.5-1.5 MW) simulation: JET-C <10% JET-ILW factor 3! Guillemaut et al. Nucl.Fusion (2014)

  6. Carbon sputtering by CH4 and C2Hy ions Nakano et al. Nucl.Fusion 54 (2014) 043004

  7. Data needed: I Neutrals (H, C, C2, Be, BeH2, CH4) 2. Partial cross sections: 1. Total cross section elastic scattering e+A →e+A rotational excitation e+CH4 (J=0) → e+CH4 (J=2) vibrational excitation e+AB(v=0) → e+AB(v>0) electron attachment (dissociative) e+AB → A- + B electronic excitation e+A →e+A* emission lines: A* → A + hv neutral dissociation e+AB → A + B + e emisison from dissociation e + AB → A* + B + e + hv ionization e+A →A++2e dissociative ionization e+AB → A + B+ + 2° ionization into excited states e + A → (A+)* + 2e

  8. Data needed: II Positive ions (BeH+) 2. Partial cross sections: • Recombination: A+ + e → A • 1a. dissociative recombination: AB+ + e → A* + B vibrational excitation e+AB(v=0) → e+AB(v>0) electronic excitation e+A+ →e+A+* double ionizatione+A+ →A2+ + 2e

  9. Databases

  10. Experimental methods: total attenuation method I = I0 exp(-σnL); precision <5% H. Nishimura et al., J.Phys. Soc. Japan 72 (2003) 1080 Sullivan et al. (2008)

  11. Experimental methods: total attenuation method I = I0 exp(-σnL); precision <5% (apart from angular resolution error) Szmytkowski & collaborators > 1984

  12. Review case study: CH4 1. Total cross section: ±5% M.-Y. Song, J. S. Yoon, H. Cho, Y. Itikawa, G. Karwasz, V. Kukooulin, Y. Nakamura, J. Tennyson, to be published

  13. Total:experiment vs. theory (NF3) • Problems with theoretical • determining their • position and amplitude • Amplitude (and width) are • too high ←neglecting • nuclear motion • - Position: underestimeated • interaction potential (?) Goswami et al. (2013)

  14. Positron – total cross sections FIRST ACCELERATOR REMODERATOR STAGE INJECTION OPTICS DEFLECTOR Karwasz eet al.. 2002

  15. … Argon: a flat cross section up to Ps threshold ?

  16. Idziaszek & Karwasz, Phys. Rev. A 73, 064701 (2006)

  17. Low energies: Modified Effective Range Theory Two fitting parameters: A – scattering length R – effective range (for s and p partial waves) CH4 K. Fedus, G. Karwasz, Eur. J. Phys. D (2014)

  18. Semi-empirical methods: elastic (MERT) Link between elastic, total, MTCS: in some simple cases, and low energies CH4 Links elastic, total, MTCS: for atoms, spherical molecules @ energies <1 eV K. Fedus, G. Karwasz, Eur. J. Phys. D (2014)

  19. Positron total: experiment vs theory PRA 2015

  20. A simple semi-empirical mode

  21. we have even more than one explanation But this is still only a model, not mechanism

  22. Swarm experiments: diffusion coefficients → cross sections Experiment is simple, but requires guessing cross sections, that can form non unique set

  23. Analogy: NO swarm data Josic et al., CPL (2003)

  24. NO resonances N2 and O2 – like

  25. Resonances: theory

  26. NO – congruent set of cross sections Confirmed by beam experiments (ANU Canberra, Fribourg Uni)

  27. High-energy total cross sections Angular resolution error !

  28. High energies total: in search for additivity rule CH4, CF4, SiH4, ... WF6 → CH2F2, SiF4 ... → H, C, Si, ... W G. Karwasz et al., Phys. Rev. A 59 (1999) 1341

  29. High energy limit (Born-Bethe plot) σ (E) = A / E + B log (E)/E CH4 C2H2 1. Trento experiment was underestimated in high-energy limit (>1000 eV) 2. We still have no idea, how do parameters link to other molecular features Mi-Young Song et al., JCPRD 2017

  30. Experimental methods: ionization If two ions are formed (for example CH4→CH3+ + H+ + 2e) the ionization is counted twice R. Basner, M. Schmidt, K. Becker, Int. J. Mass Spectr. 233 (2004) 25

  31. Experimental methods: ionization (2) SiCl+ from single, double, triple ionization of SiCl4 B. G. Lindsay et al., JCP 129 (2004), S J King nad S D Price, JCP134 (2011) 074311

  32. Ionization (excellent!): CH4 Ionization total: ±10% M.-Y. Song, J. S. Yoon, H. Cho, Y. Itikawa, G. Karwasz, V. Kukooulin, Y. Nakamura, J. Tennyson, JPCRD (2016)

  33. Ionization (fair): C2H2 M.-Y. Song, J. S. Yoon, H. Cho, Y. Itikawa, G. Karwasz, V. Kukooulin, Y. Nakamura, J. Tennyson, JPCRD (2017)

  34. Ionization: BEB formula Experiment overestimes counting ionization (due to dissociative ionization) Normalized energies: t= E/In, un=Ekin/ In Only two values needed from QCh See: G. Karwasz, P. Mozejko, M.-Y. Song, Int. J. Mass Spectrometry (2014) and poster by Gupta

  35. Ionization (BEB): CH4, CH3F, ... CF4 Thumb rule (?) σmax = 4/3 α G. Karwasz, P. Mozejko, M.-Y. Song, Int. J. Mass Spectrometry (2014)

  36. Ionization (BEB) & elastic: H6N2Cl2Pt No theories, no experiments B. Żywicka, P. Możejko, Eur. J. Phys. D (2012)

  37. Ionization (Fe+24): CCC theory Fursa et al. (2016)

  38. Experimental methods: excitation (electronic, vibrational) e- + O2 (v=0) – e- + O2 (v=0, 1, 2, etc.) Experiments by: I. Linert, M. Zubek (Gdansk) J. Phys. B 39 (2006) M. Khakoo et al. (Fullerton California) M. Allan (Freiburg University)

  39. Electronic excitation H2 (in 1996)

  40. Electronic excitation: H2 (experiment) Differences by 5-folds Courtesy: Ursul Fantz

  41. Electronic excitation: H2 (theory) Agreement within error bar with experiments CCC: Tapley, Fursa et al. J. Phys. B (2018)

  42. Electronic excitation: H2 (theory) B 1Σ+u C 1Σ+u Agreement within error bar with experiments Hargreaves et al.. J. Phys. B (2017)

  43. Electronic excitation: CH4 Electronic excitation: reasonable agreement between dissociation into-neutrals experiment and R-Matrix calculation W. J. Brigg, J. Tennyson, M. Plummer J. Phys. B 47 (2014) 185203 R-Matrix

  44. Dissociation into neutrals (CF4, CH3F…) x 3 volatile organotellurides x 2 x 1 Additivity rule: cross section = sum of paths Motlagh and Moore, JCP109 (1988) 432

  45. Heavier, ITER-like targets G. Karwasz, K. Fedus, FS&T (2013), experimental data: Szmytkowski and collaborators

  46. WF6 - few data ? ? GK, work in progress

  47. BeH: electronic and vibrational excitation X2 Σ + (v=0) → A2П (v’) Cross section Rate coefficients R Celiberto, K L Balujaand R K Janev, Plasma Sources Sci. Technol. 22 (2013) 015008 Mott-Massey Schr. eq. No experiments to compare with

  48. Tungsten, berillium (model potentials) W Be [15] Zatsarinny (2015) F. Blanco et al. (2017)

  49. Polar targets: large uncertainties Positron scattering on H2O molecules (polar target) ANU Canberra

  50. ITER-like: NH3 ? NH3 μ =1,47 D Jones et al. PRA 78, 042714 (2008)

More Related